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Abstract—Low-power wide-area networks (LPWANs) have
become ubiquitous in the Internet of Things (IoT) applications
due to their ability to connect sensors across large geographic
areas over a single hop. It is, however, very challenging to achieve
massive scalability in LPWANs where numerous sensors can
transmit data energy efficiently and with low latency, which
may be required by the emerging IoT applications. In this
paper, we address the above challenges by significantly advancing
an LPWAN technology called SNOW (sensor network over
white spaces). SNOW exploits D-OFDM (distributed orthogonal
frequency division multiplexing) to enable parallel reception of
data to a base station (BS) from multiple asynchronous sensors,
each sensor using a different D-OFDM subcarrier. In this paper,
we achieve massive scalability in SNOW by enabling the BS
to decode parallel data from multiple asynchronous sensors on
the same subcarrier while concurrently decoding from other
subcarriers as well. To do this, we develop a set of pseudorandom
noise (PN) sequences that are mutually non-interfering within
and across the DOFDM subcarriers. Each sensor uses its own
PN sequence (from the set) for modulating data on its subcarriers,
enabling massive concurrency in SNOW. Our simulation results
show that we can achieve approximately 9x more scalability in
SNOW while being both energy efficient at the sensors and timely
in data collection at the BS, thereby enabling emerging IoT
applications that require longer sensor battery life as well as
make time-critical, data-driven decisions.

Index Terms—LPWAN, SNOW, OFDM, spread spectrum.

I. INTRODUCTION

The number of Internet of Things (IoT) connections is
expected to reach 83 billion by 2024, with an industry value
of over a trillion dollars. The emerging IoT and CPS (cyber-
physical systems) applications, including sensing and moni-
toring, smart farming, and oil field management aim to utilize
IoT devices for enhancing sustainability, quality of life, health,
safety, and economic prosperity of communities in both urban
and rural areas. IoT devices (i.e., sensors or simply nodes)
are usually battery-powered, scattered in large numbers (e.g.,
several thousand) over several kilometers for the above use
cases, and may be at various distances away from the gateways
or base stations (BSs). It thus becomes extremely challenging
to connect and coordinate them for periodic or sporadic data
collection and make time-critical, data-driven decisions.

To enable wide-area IoT and CPS applications, existing
wireless sensor network (WSN) technologies (e.g., Zigbee and
WirelessHART) form multi-hop mesh networks, complicating
the protocol design and network deployment resulting in
scalability issues, high energy consumption, and high latency

in data collection [1]. Due to their underlying design and
operational limitations, existing low-power wide-area network
(LPWAN) technologies (e.g., LoRa, SigFox, NB-IoT, and 5G)
also suffer from scalability issues and high energy consump-
tion and high latency in sensor data collection, especially in
infrastructure-limited rural areas [2]. For example, the leading
LPWAN technology, LoRa, supports approximately 120 nodes
per 3.8 hectors until its performance drops sharply [3], which
may not be sufficient to meet the scalability requirements of
the emerging IoT and CPS applications [2].

In this paper, we focus on enabling massive scalability in an
LPWAN technology called SNOW (sensor network over white
spaces) [4]–[7]. The current SNOW design exploits the TV
white spaces (i.e., allocated but locally unused TV channels
and can be used by unlicensed devices [8]) to connect sensors
to a BS. It has a D-OFDM (distributed orthogonal frequency-
division multiplexing) based physical (PHY) layer that allows
different asynchronous sensors to transmit data to a BS (i.e.,
uplink communication) concurrently using different D-OFDM
subcarriers, where each sensor is assigned a subcarrier [4].
D-OFDM also allows a BS to transmit asynchronously to
different sensors (i.e., downlink communication) concurrently
using different subcarriers [5]. In this paper, we significantly
advance the SNOW PHY layer where numerous sensors can
asynchronously transmit to a BS simultaneously on the same
subcarrier (when assigned the same subcarrier) while the rest
of the subcarriers can be used in the similar fashion and in
parallel by other sensors as well (uplink communication only).

Enabling massive concurrency in SNOW uplink is very
challenging. First, concurrent transmissions from different
sensors on the same D-OFDM subcarrier will collide and the
BS may not decode any of these transmissions, resulting in
lost packets and wasted energy consumption at the sensors.
Second, parallel transmissions from different sensors on the
neighboring D-OFDM subcarriers will break the orthogonality
of the D-OFDM architecture, and hence the BS may not
decode any of these transmissions, resulting in consequences
similar to those above. In other words, these two reasons
will introduce severe inter-symbol and inter-subcarrier in-
terferences between signals from the sensors on the same
subcarrier and neighboring subcarriers, respectively, resulting
in decreased scalability in SNOW, high energy consumption
at the sensors, and high latency at the BS in data collection
in convergecast scenarios due to retransmissions.



In this paper, we address the above challenges as well as
make the following key contributions:
• To enable successful concurrent transmissions from nu-

merous asynchronous sensors to a BS on and across the
D-OFDM subcarriers, we develop a set of decentralized
pseudorandom noise (PN) sequences (also known as pseu-
dorandom spreading sequence) based on Gold code [9].
Each sensor is assigned a PN sequence using which it
asynchronously transmits and receives data on its subcarrier.
Our set of PN sequences has very good cross-correlation
properties (e.g., almost no correlation between the PN
sequences), which minimizes the interference (e.g., inter-
symbol interference and inter-subcarrier interference) on and
across the D-OFDM subcarriers in SNOW.

• We enable a higher bitrate than the per-sensor bitrate
requirement of the IEEE 802.15.4 standards’ [10] direct-
sequence spread spectrum (DSSS) where a group of 4
bits is spread to 32 chirps, considering a typical sensor
data size of 28 bytes in practical deployments (e.g., those
using TinyOS [11]). Our design may thus inspire enhanced
scalability in the WSN standards as well.

• We develop a SNOW simulation platform using python’s
NumPy library and make it open-source [12]. To our
knowledge, this is the first open-source simulation platform
for SNOW. In our simulation, we implement the SNOW
PHY layer, including our proposed innovations, and per-
form large-scale evaluation. The evaluation results show
that our design provides approximately 9x improvement in
scalability compared to the existing SNOW design, resulting
in improved energy efficiency in the sensors and reduced
latency at a BS in convergecast scenarios.
The rest of the paper is organized as follows. Section II

presents the related work. Section III briefly overviews the
existing SNOW architecture and presents our system model.
Section IV details our PN sequences generation techniques for
spreading and despreading data. Section V provides the im-
plementation details and evaluation results. Finally, Section VI
concludes our paper.

II. RELATED WORK

WSN Technologies. The emerging wide-area IoT and CPS
applications need to connect and coordinate hundreds to
thousands of sensors over distances of tens of kilometers. The
existing WSN technologies operating in the 2.4 GHz spectrum
(e.g., IEEE 802.15.4, IEEE 802.11, and BLE) may facilitate
such connections by forming multi-hop mesh networks due to
their short communication range [1], [13]. This, however, will
complicate the protocol design, resulting in reduced scalability,
high energy consumption at the sensors, high latency in data
aggregation, and high cost in real-world deployments [6], [14].
In this paper, we develop protocols for enhanced scalability in
LPWANs that have the potential to connect numerous sensors
to a BS by forming a single-hop over several kilometers.
LoRa and Sigfox. Sigfox and LoRa are the two dominat-
ing LPWAN technologies operating in the unlicensed ISM

band [2]. Their devices adopt a 1% or 0.1% duty cycle require-
ment, making them less suitable for IoT or CPS applications
with thousands of sensors or with real-time requirements [3],
[15]–[19]. Sigfox supports a datarate of 10 to 1,000 bps, and
a device can send at most 140 12-byte messages (each takes 3
seconds) per day. LoRa employs different channel bandwidths
(BWs) between 125 and 500 kHz, spreading factors (SFs)
between 7 and 12, and coding rates between 4

5 and 4
8 to

achieve scalability and different datarates. Using 125 kHz BW
and SF of 10, a 12-byte payload in LoRa has an air time of
411.6 ms and bitrate of 980 bps. The higher the SF, the lower
the bitrate in LoRa. This problem is exacerbated since large
SFs are used more often [20]. Sigfox and LoRa may not be
suitable for the emerging IoT and CPS applications requiring
massive scale, high data rate, and ultra-low latency [2], [15].
Conversely, SNOW has the potential to achieve the above in
the TV white spaces [7].
SNOW vs. Other LPWANs. A number of LPWAN technolo-
gies, including NB-IoT [21] and 5G [22] have targeted the
cellular infrastructure and band. The 5G standard is currently
under development. The NB-IoT specification froze at Release
13 of the 3GPP specification. Operating in the licensed band
is costly due to high service fees and infrastructure and may
not be available in the infrastructure-limited rural areas [2],
[23], [24]. These technologies also require the sensors to
frequently synchronize, which is much energy-consuming. It
thus is impractical to ensure sustainability over an extended
period, uninterrupted operation, and longevity of the emerging
IoT and CPS applications. Many other technologies have been
developed that operate in the licensed (e.g., LTE Cat M1 and
EC-GSM-IoT) or unlicensed (e.g., INGENU, IQRF, Telensa,
DASH7, Weightless-N/P, IEEE 802.11ah, IEEE 802.15.4k/g)
bands [2], [15], [25]–[28] and severely interfere each other (as
applicable). To avoid the high cost of the licensed band and
the crowd of the ISM band, SNOW has been developed [4]–
[7], [14], [29]–[34]. White spaces are widely available in
both urban and rural areas, are less crowded, and offer a
wider spectrum compared to other available frequencies for
LPWANs [2], [5], [15], [35]. SNOW thus has huge potential,
and we propose to significantly advance its PHY layer.

III. BACKGROUND AND SYSTEM MODEL

In this section, we briefly overview the SNOW technology
and present our system model.

A. Overview of SNOW

Architecture. SNOW is a highly scalable LPWAN technology
operating in the TV white spaces. It supports asynchronous, re-
liable, bi-directional, and concurrent communication between
a BS and numerous nodes. Due to its long-range, SNOW forms
a star topology allowing the BS and the nodes to communicate
directly (shown in Figure 1). The BS is powerful, Internet-
connected, and line-powered while the nodes are power-
constrained and do not access the Internet. To determine white
space availability in a region, the BS queries a cloud-hosted
geo-location database. A node depends on the BS to learn its
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Fig. 1. SNOW Dual-radio BS and subcarriers.

white space availability. In SNOW, all the complexities are
offloaded to the BS to make the node design simple. Each
node is equipped with a single half-duplex radio.
Physical Layer. To support simultaneous uplink and downlink
communications, the BS uses a dual-radio architecture for
reception (Rx) and transmission (Tx), as shown in Figure 1.
The SNOW PHY layer uses a distributed implementation
of OFDM called D-OFDM. D-OFDM enables the BS to
receive concurrent transmissions from asynchronous nodes
using a single-antenna radio (Rx-radio). Also, using a single-
antenna radio (Tx-Radio), the BS can transmit different data to
different nodes concurrently. The BS operates on a wideband
channel split into overlapping (50%) orthogonal narrowband
channels/subcarriers. Each node is assigned a subcarrier. For
encoding and decoding on each subcarrier, the BS runs inverse
fast Fourier transform (IFFT) and global fast Fourier trans-
form (G-FFT) over the entire wideband channel, respectively.
SNOW supports ASK (amplitude-shift-keying) and BPSK
(binary phase-shift-keying) modulation techniques.
Medium Access Control Layer. When the number of nodes
is no greater than the number of subcarriers, each node is
assigned a unique subcarrier. Otherwise, a subcarrier is shared
and the corresponding nodes use a lightweight CSMA/CA
(carrier sense multiple access with collision avoidance)-based
MAC (medium access control) protocol. The nodes can au-
tonomously transmit, remain in receive mode, or sleep. When
a node has data to send, it wakes up by turning its radio on.
Then it performs a random back-off in a fixed initial back-off
window. When the back-off timer expires, it runs CCA (clear
channel assessment). If the subcarrier is clear, it transmits
the data. If the subcarrier is occupied, then the node makes
a random back-off in a fixed congestion back-off window.
After this back-off expires, if the subcarrier is clean the node
transmits immediately. This process is repeated until it makes
the transmission and gets an acknowledgment (ACK).

B. System Model

Currently, in SNOW uplink, a BS can receive concurrently
from distinct sensors using distinct subcarriers at any given
instance (even with its MAC protocol), which limits the
scalability. In our design, we proposed to enable concurrency
within and across the subcarriers at any given instance in
uplink communication, as depicted in Figure 2. Such concur-
rency will increase the scalability of SNOW by a factor of
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…
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…

Fig. 2. Proposed concurrency in uplink for SNOW PHY layer.

∑r−1
i=0 si, where si is the number of sensors using subcarrier

i concurrently and r is the number of total subcarriers. In
this paper, we limit our work to advancing the SNOW PHY
layer in uplink only and leave the room for a new MAC
protocol (needed when the number of nodes assigned to a
subcarrier exceeds the subcarrier’s concurrency capacity) and
downlink communication as the future work. We thus solely
focus on developing a set of PN sequences that preserves
the D-OFDM feature of the SNOW PHY layer such that
the inter-symbol interference and inter-subcarrier interference
are minimal while the BS can decode data. Overall, the BS
generates the set of PN sequences (and creates two instances of
it) and assign each sensor a sequence when the sensor joins
the network and assigned a subcarrier. No two sensors that
are sharing a subcarrier or on neighboring subcarriers get the
same PN sequence. We also adopt many design parameters of
the current SNOW, including subcarrier overlapping (50%),
bandwidth (200–400 kHz), and data modulation (ASK only).

IV. MASSIVE CONCURRENCY IN SNOW PHY LAYER

In this section, we detail our techniques for generating the
set of PN sequences (i.e., pseudorandom spreading sequence),
encoding (i.e., spreading) of the transmitted signals, and de-
coding (i.e., despreading) of the received signals. Additionally,
we discuss the achievable datarates by our design.

A. Spreading Sequence Generation

Recall that we aim to enable concurrency within and across
the D-OFDM subcarriers at any given instance. For this,
we develop a set of PN sequences or waveforms, which
allows numerous sensors to share a band of frequencies (i.e.,
subcarriers) with as little mutual interference as possible when
each sensor is assigned a distinct sequence or code. Ideally,
a received signal which has been spread using a different
code will cause minimal interference in the aggregated signal
over the entire bandwidth. The amount of interference from
a sensor employing a distinct code (from a set) is related
to the cross-correlation and power levels of all the codes in
the set [36]. Unfortunately, such an ideal set would contain
sequences of equally likely infinite random binary digits,
requiring infinite storage in both the transmitter and receiver,
which is impractical for the resource-constrained sensors.

The above limitations inspire the need for a set of periodic
PN sequences (also used in Gold code [9]) that can be
generated using a simplified circuit consisting of two linear



feedback shift registers (LFSRs) and a few XOR (exclusive
OR) gates (one for XORing two LFSRs and one for each
tap in the LFSRs), which is practical for the sensors. The
number of taps in each LFSR is determined by its unique
polynomial equation [37] and our achievable bitrate under
minimum interference (explained in Section IV-D). An LFSR
generates maximal-length sequences (m-sequences) that are
the pseudorandom binary sequences of the maximum period
(e.g., until it repeats). An XOR gate is used to mix two
different m-sequences (of the same length) from two different
LFSRs to generate a PN sequence in our design. In an LFSR,
a bit is generated by a linear combination of the previous
n bits, for a suitable choice of n. In a nutshell, a window
of n bits (i.g., initial seed) is slide right (by one position)
2n − 1 times to cover 2n − 1 n-bit strings, generating 2n − 1
distinct m-sequences, each with a length of 2n − 1. We avoid
2n slides since this starts repeating the sequences, which may
cause inter-symbol interference within a subcarrier when the
actual PN sequence is generated and used by the corresponding
sensors. In the following, we detail the m-sequences and our
intended set of PN sequences generation techniques.
m-sequences Generation. Each LFSR generates a maximum
of 2n−1 m-sequences, each of 2n−1 bits as well, where n is
the number of bits in the initial seed [38]. The register shifts
all the bits to the right at each clock cycle c, generating the i-th
sequence ai = (c1�ai−1)⊕(c2�ai−2)⊕...⊕(cn�ai−n) [39],
which is a recursive formula. In the above equation, all
the terms are binary (1 or 0), and � and ⊕ are modulo-2
multiplication and modulo-2 addition operations, respectively.
Specifically, the generated m-sequences with non-zero initial
vectors (i.e., seeds) have period N = 2n−1 with the following
three randomness properties that minimize the interference. (1)
The number of 1’s and 0’s are approximately equal. (2) Half of
the runs (i.e., subsequences of consecutive 1’s and consecutive
0’s) have length 1, 1

4 runs have length 2, 1
8 runs have length 3,

and 1
2k

have length k, where (k < n). (3) It has sequence au-
tocorrelation that is a randomness measurement and provides
the degree of correspondence between an m-sequence and its
phase-shifted replica. The smaller the correlation, the easier it
is for a receiver to recover the m-sequence from interference.
An m-sequence’s periodic autocorrelation function R is given
by R(τ) = 1

N

∑N
n=1 a

′

na
′

n−τ , where a
′

n = 1− 2an (i.e., a ±1
sequence) and τ represents different periods. It can also be
shown that the periodic autocorrelation of an m-sequence is

R(τ) =

{
1 τ = 0, N, 2N, ...

− 1
N otherwise.

Similar to autocorrelation, cross-correlation is also a mea-
surement of interest in m-sequences. It is the degree of
correspondence between m-sequences used by different users
(i.e., sensors). Intuitively, the cross-correlation between dif-
ferent m-sequences needs to be low to avoid interference. If
a

′

n and b
′

n are two m-sequences, then their cross-correlation
Ra′ ,b′ (τ) =

1
N

∑N
n=1 a

′

nb
′

n−τ , where b
′

n = 1−2bn (i.e., a ±1
sequence). It has been shown that the number of m-sequences

that have the least cross-correlation is very small and may
not be feasible for multiple access systems [40], [41] such as
D-OFDM due to asynchronicity between sensors within and
across subcarriers. To this extent, we generate a set of PN
sequences based on Gold code [39] using the generated m-
sequences above.
Gold Code-Based PN Sequences Generation. Similar to
the DS-CDMA (direct sequence code division multiple ac-
cess) Gold codes, we generate a set of PN sequences for
the D-OFDM system in SNOW such that different sensors
may transmit asynchronously within and across subcarriers
(which is unlike DS-CDMA). Gold codes provide a uniform
and bounded cross-correlation between the codes [42]–[44].
Similar to the Gold code, our PN sequences are generated
by repeatedly taking bitwise XORs of two uncorrelated m-
sequences of the same length. Figure 3 shows such a generator.
Two LFSRs with two non-zero seeds seed 1 and seed 2,

m-sequence 1
(LFSR 1)

m-sequence 2
(LFSR 2)

seed 2

seed 1

Clock PN Sequences

Fig. 3. Generation of PN sequences.

each of length n, generate two different m-sequences, each of
length N = 2n − 1. Changing the seeds generates a new set
of PN sequences. For each PN sequence in a set, there may
exist many pairs of m-sequences. However, not each pair of
m-sequences generate a PN sequence that will have less cross-
correlation (i.e., less mutual interference) with the other PN
sequences in the set. For this, the PN sequences in D-OFDM
should have three-valued peak cross-correlation magnitudes
that are both uniform and bounded [40].

To generate a set of PN sequences with the above require-
ments, a good pair of m-sequences (also called preferred pair)
is needed. Let our preferred pair be {u, v} where u and v
are generated by LFSR 1 and LFSR 2, respectively. If we
consider u as a binary vector, then v can be generated in
a deterministic manner by sampling every q-th bit of u, for
some appropriate q (e.g., if and only if gcd(N, q) = 1 [39])
from multiple copies of u until both u and v have the same
length (e.g., N ). The i-th PN sequence is generated by a
bitwise XOR of u and an i-bit shifted copy of v. Specifically,
{u, v} should have the following properties. (1) Both LFSR 1
and LFSR 2 have preferred but unique polynomial equations
with a degree of n. (2) n is not divisible by 4 [45]. (3) q
is odd and either q = (2k + 1) or q = (22k–2k + 1). (4)
gcd(n, k) = 1 if n is odd or gcd(n, k) = 2 is n is even. Using
the above technique, the set of PN sequences may be denoted
as G(u, v) = {u, v, u⊕ v, u⊕Dv, u⊕D2v, ..., u⊕DN−1v}
where D is the delay element and represents the operator that
shifts vectors cyclically to the left by one place. Additionally,



G(u, v) contains a total of M = (N + 2) sequences (recall
that N = (2n − 1) and the ”+2” is for initial referred pairs).
In G(u, v), any pair of PN sequences or a PN sequence
and its shifted version has one of the three cross-correlation
magnitudes in {–t(n), –1, t(n)–2}, where t(n) = 1+2(n+2)/2

if n is even or t(n) = 1 + 2(n+1)/2 if n is odd.

B. Encoding the Transmitted Signal

As discussed in Section III-B, we consider ASK, especially
OOK (on-off keying), as the subcarrier modulation, where
presence and absence of a carrier signal represent bit 1 and
bit 0, respectively. Within a D-OFDM subcarrier, a sensor
transmits a signal (which is a symbol in D-OFDM) to represent
a data bit 1. To handle inter-subcarrier interference, a data bit is
spread to 8 bits (actual symbol duration) by repeating it 8 times
in the existing SNOW [6]. In our design, we spread a data bit
to N bits by repeating it N times and then multiplying the
spread data with the sensor’s PN sequence (and subsequently
mixed with the (sub)carrier signal). We thus have an N -bit
long symbol that accounts for both inter-symbol interference
(between the sensors within a subcarrier) and inter-subcarrier
interference (between sensors across subcarriers). This way
we achieve our proposed concurrency (as shown in Figure 2)
in the SNOW PHY layer. Let bij(k) and gij(k) be the k-th
spread bit of a data bit and k-th bit of the PN sequence of
sensor j on subcarrier i, respectively. Thus, the signal for the
k-th spread bit is xij(k) = bij(k)gij(k). Overall, the symbol
for a data bit 1 in our design may be represented as

[gij(k), gij(k + 1), ..., gij(N − 1)]T = gij .

We can create an equal-length (i.e., N -bit) symbol for data bit
0 with the similar process, which will be all 0’s, and hence no
signal transmission when mixed with the (sub)carrier signal.

C. Decoding the Received Signal

After the global FFT performed by the BS in SNOW
(III-A), samples in each subcarrier are isolated (from the
corresponding FFT bins) and considered for despreading and
decoding by our system. Let, ri be the received samples’
vector of a symbol at subcarrier i. Each sample K in ri is

ri(K) =

L∑
i=1

xij(k) + z(K)

where L is the number of sensors using subcarrier i and z
is the additive white Gaussian noise vector (AWGN). The
power level (i.e., magnitude) of each sample is given by
the G-FFT algorithm. Similar to the current SNOW PHY
demodulator [4], we maintain a 2D matrix at the BS to decode
each data bit from each sensor in each subcarrier. An entry
ri(K) (interpreted as r[i][K]) in the matrix represents the K-
th sample in i-th subcarrier. A decoding agent in the BS keeps
running to detect data from different sensors on each subcarrier

by multiplying different PN sequences for that subcarrier. For
example, the despread data from sensor j on subcarrier i is

rTi gij = [ri(K), ri(K+1), ..., ri(K+N−1)]


gij(k)

.

.

.
gij(k +N − 1)

 .
This operation gets rid of the interference (by other sensors if
any) and noise. Note that the vectors of samples of symbols are
generated right after the detection of a preamble of a packet
in any subcarrier. After a symbol is despread, we recover the
original data bit (which was repeated before spreading) by
simply undoing the repeat operation. For this, we consider that
a data bit is 1 if at least half of the repeated bits remain 1. This
technique allows for an additional guard against interference.

D. Achievable Bitrate

For a sensor on an AWGN subcarrier of bandwidth B
with signal-to-noise ratio (SNR) SNR, the maximum Tx
bitrate C = B log2(1 + SNR) based on the Shannon-Hartley
Theorem. On a subcarrier with B = 200 kHz and SNR = 3
dB, we may achieve a bitrate of 200∗2

N = 400
N kbps (recall

that N is the PN sequence length of the sensor). In our
evaluations (Section V), we choose N = 7, which gives us
a Tx bitrate of ≈57.14 kbps per sensor. Additionally, two
signal levels in our ASK modulation conform to the Nyquist
Theorem C = 2B log2 2

m where 2m is the number of signal
levels to support a theoretical bitrate of ≈57.14 kbps per
sensor. If a subcarrier is shared by M = (N + 2) number
of sensors, then our maximum achievable Tx bitrate over
bandwidth B increases M -times, which is ≈M-times better
(and conform to the Nyquist Theorem) compared to the IEEE
802.15.4 standards’ datarate requirements of 50 kbps over a
channel [10] or the current SNOW design. In evaluations, we,
however, choose B = 400 kHz due to interference created by
concurrent Txs and an SNR = 6 at the BS, which still provides
us with an effective bitrate of > 50 kbps per sensor.

V. EVALUATION

We now present our implementation and evaluation results.

A. Implementation

We create a SNOW simulation platform using the Python
programming language. For splitting a wideband into nar-
rowband AWGN subcarriers, performing FFT operation, and
other signal processing operations, we use the Python NumPy
library. Similarly, we use the same library for generating the
PN sequences and encoding of the transmitted signals at the
sensors and decoding of the received signals at the BS. Our
open-source implementation is available online [12].

B. Evaluation Setup

As discussed in our system model in Section III-B, no two
sensors sharing the same subcarrier or are on neighboring
subcarriers do not have the same PN sequence assigned to
them. To ensure this, we generate two instances of our set of
PN sequences (say, PNs1 and PNs2) using two different sets



of initial seeds, which still hold the required cross-correlation
properties. We then allocate PNs1 to all the odd-numbered
subcarriers and PNs2 to all the even-numbered subcarriers,
and thus ensuring the above requirements. For both PNs1
and PNs2, we use n = 3, which yield N = 7, and thus
aim for the discussed datarate in Section IV-D. For PNs1, we
choose seed 1 = seed 2 = 101 (both can be the same since
LFSRs use different polynomial equations) and get PNs1 =
{1011100, 1010011, 0001111, 1111011, 0010010, 1000001,
1100110, 0101000, 0110101}. For PNs2, we choose seed 1
= seed 2 = 010 (which is different from the seeds of PNs1)
and get PNs2 = {0101110, 0100111, 0001001, 1100000,
0110011, 0010100, 1011010, 1000111, 1111101}.

In simulation, we use 64 400kHz subcarriers (numbered 1 –
64) with 50% overlapping within 547 – 560 MHz (TV white
spaces), and each subcarrier is shared by at most 9 sensors,
totaling 576 sensors, which is 9-times higher than the original
SNOW could accommodate. Similar to the current SNOW,
we emulate a Tx power of 0 dBm, receive sensitivity of -85
dBm, packet size of 40 bytes (excluding an 1-byte preamble),
containing 12-byte header and 28-byte random payload (data,
CRC), and an SNR of 6 dB. Unless stated otherwise, these
are our default parameter settings.

C. Threshold Selection

Since at most 9 sensors may transmit on the same sub-
carrier, the received signal strength (RSS) of the received
symbols after the FFT output is not limited to 0s and 1s.
Signals from concurrently transmitting sensors superimpose
and make it challenging to decide the magnitude of the super-
imposed signal. For this, we consider the average signal power∑M
i=1

√
I2 +Q2 to decide different thresholds levels, where I

and Q are the in-phase and quadrature signal components, and
M is the averaging number of samples. Specifically, we collect
50,000 samples for each case when the number of concurrently
transmitting sensors on a subcarrier vary from 0 to 9, where
each sensor also transmits only 1s.
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Fig. 4. Threshold behavior.

Figure 4 shows the cumulative distribution function (CDF)
of RSS values in the above setup. As shown in this figure,
when there is no transmission (i.e., no sensor), the RSS is
below 0.5 for 100% of the cases, which may be used to
denote magnitude 0. When a single sensor transmits, the RSS
is between 0.51 and 1.5 for 100% of the cases, which may be

quantized to magnitude 1. For the case of 2 sensors, the RSS
is between 1.51 and 2.5 for 100% of the cases, which may be
quantized to magnitude 2. Similarly, to denote magnitudes 3,
4, 5, 6, 7, 8, and 9, the RSS ranges are 2.51 – 3.5, 3.51 – 4.5,
4.51 – 5.5, 5.51 – 6.5, 6.51 – 7.5, 7.51 – 8.5, and 8.51 – 9.5 for
100% of the cases, respectively. In the rest of the evaluations,
we use the findings in this section to determine different
magnitude levels, as necessary for despreading/decoding.

D. Evaluating Link Performance

In this section, we provide our evaluation results on reliabil-
ity of the links (i.e., subcarriers) of our design. Specifically, we
consider 3 neighboring subcarriers with 50% overlaps, which
may generalize all the subcarriers in our implementation. For
example, we use subcarriers with center frequencies 549.8
MHz, 550.0 MHz, and 550.2 MHz, where the subcarrier
with 550.0 MHz center frequency is the middle subcarrier
and overlaps 50% with its neighbors on both sides. For
reliability calculation, we use the metric correctly decoding
rate (CDR) that refers to the percentage of packets that are
correctly decoded at the BS among all the transmitted ones
by the sensors. For this simulation, we allow 1 to 9 sensors
concurrently transmit on each of the considered subcarriers,
totaling 27 sensors. In each case, a node sends consecutive 100
40-byte packets to the BS using its subcarrier with a random
inter-packet interval of 0 – 3 ms that ensures overlapping of
packets (each packet takes ≈5.6 ms to transmit) with other
sensors on the same or neighboring subcarriers. We also repeat
this experiment 100 times and present the results in Figure 5.
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Fig. 5. Link reliability in our design.
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Fig. 6. Network performance evaluation.

Correctly Decoding Rate. Figure 5(a) shows the average
CDR at the BS for the selected subcarriers for different
number of sensors on different subcarriers. As shown in this
figure, when 3, 6, 9, and 12 sensors transmit (i.e., 1, 2, 3,
and 4 sensors on each subcarrier, respectively), the average
CDRs of all these cases are 100%. For the cases where 15,
18, 21, 24, and 27 sensors transmit (i.e., 5, 6, 7, 8, and
9 on each subcarrier, respectively), the average CDRs are
98.4%, 97.71%, 97.33%, 95.33%, and 92.88%, respectively. In
summary, in all the cases, the average CDRs are above 92%,
which confirm high reliability of our design under massive
concurrency and is acceptable in wireless networks [6], [14].
Subcarrier Reliability in Extreme Case. Figure 5(b) shows
the CDRs on different subcarriers for the extreme case where
27 sensors transmit concurrently (i.e., 9 sensors on each
subcarrier) and there are no inter-packet (of different senors)
delays. Thus, all the packets are colliding in the worst way
possible in a network with concurrent transmissions in this
scenario. As shown in Figure 5(b), for the packets (approxi-
mately 30,000 40-byte packets) of 1 sensor on each subcarrier
(i.e., total 3 sensors), the CDRs on 549.8 MHz subcarrier
is ≈93%, 550.0 MHz subcarrier is ≈92%, and 550.2 MHz
subcarrier is ≈93%. This figure also shows that, as we increase
the number of sensors on each subcarrier, the CDRs do not
change drastically. For example, the extreme cases of 2, 3, 4,
5, 6, 7, 8, and 9 sensors on each subcarrier also yield CDRs in
the approximate range of 92% – 93% in all the three selected
subcarriers in this simulation setup.

E. Evaluating Network Performance

In this section, we evaluate several network parameters,
including throughput (kbps), latency in data collection, energy
consumption at the sensors, and performance under interfer-
ence. Additionally, we compare our network performance with
the existing SNOW design (MAC-enabled), as described in
Section III-A. In this simulation, we use all the 64 subcarriers
of the 547 – 560 MHz band. As mentioned earlier, all the
sensors using odd- and even-numbered subcarriers get PN
sequences from sets PNs1 and PNs2, respectively. In this
simulation, we create a convergecast scenario and analyze the
following network parameters, where each sensor has 100 40-

byte packets (including 12-byte headers) with a random inter-
packet interval of 0 – 3 ms.
Throughput. It refers to the effective bitrate at the BS. For
calculating the throughput, we consider various numbers of
sensors up to 9 × 64 = 576. Also, the 12-byte headers
are not considered in the throughput calculation. Figure 6(a)
shows the throughput of our design when numerous sensors
between 64 and 576 transmit concurrently using 64 subcarriers
(each having a minimum and maximum of 1 and 9 sensors,
respectively). As shown in this figure, we achieve (vs. existing
SNOW) a bitrate of approximately 2.56 Mbps (vs. 2.04 Mbps)
and 5.03 Mbps (vs. 2.01 Mbs) when 64 and 128 sensors
transmit concurrently. As we increase the number of sensors,
our throughput increases almost linearly, unlike the fixed or
slightly decreasing throughput in the existing SNOW (since it
can decode only 64 sensors at any instance). For example, our
bitrate is ≈20.31 Mbps (vs. ≈1.94 Mbps in existing SNOW)
when 576 sensors transmit concurrently. We thus improve
approximately 9x in throughput (vs. existing SNOW).
Latency. Figure 6(b) shows the per-packet latency in con-
vergecast while taking into account the lost packets (without
using ACK but by a curve fitting approach so that we can
emulate a 100% reliability) as we increase from 64 to 576
sensors. Latency refers to the time it takes for a packet to be
correctly delivered at the BS. As shown in this figure, the av-
erage (over sensors used) per-packet latency is approximately
5.6 ms when 64 sensors transmit concurrently in our design.
As we increase the number of sensors up to 576, the average
per-packet latency stays in the range 5.6 – 6.03 ms due to the
massive concurrency in our design. In contrary, the average
per-packet latency increases linearly or at a higher rate as
we increase the number of sensors from 64 to 576 in the
existing SNOW, which is due to its CSMA-based MAC. This
simulation thus confirms timeliness in our design, which may
help many time-critical or real-time IoT or CPS applications.
Energy Consumption. Figure 6(c) depicts the average (over
sensors used) per-packet energy consumption (for 100% reli-
ability) in our convergecast scenario. We calculate the energy
based on the energy model of CC1310 transmitter (Tx current:
17.5 mA, idle current: 0.5 mA, and sleep current: 0.2µA at
0 dBm) that can operate in TV white spaces [4]. As shown



in Figure 6(c), our average per-packet energy consumption
stays almost the same (in the approximate range of 0.2940
– 0.3166 mJ) when we transmit concurrently and increase
total sensors from 64 to 576. The average per-packet energy
consumption in the existing SNOW increases linearly or at
a higher rate (in the approximate range of 0.3675 – 3.4493
mJ) as the total sensors is increased from 64 to 576. This
is due to limited concurrency in SNOW and its CSMA-based
MAC protocol. Our design thus shows better energy efficiency
at the sensors, which will improve the lifetime of remote
IoT or CPS applications. Overall, our simulations on several
link parameters and network parameters show that our design
provides much more concurrency in the PHY layer compared
to the existing SNOW design.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have significantly advanced the PHY
layer of an LPWAN technology called SNOW by enabling
unprecedented concurrency. In doing so, we have developed
a set of PN sequences based on Gold code, which causes
minimal interference within and across the SNOW subcarriers
when used by the sensors. Our evaluation results have shown
that we have achieved ≈9x more scalability in our design
as well as significantly improved the per-packet latency and
energy consumption at the network level. Overall, our design
may motivate massive concurrency in communications in
LPWANs and WSNs through its open-source implementation.
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