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ABSTRACT
The rapid growth of various Low-Power Wide-Area Network (LP-
WAN) technologies in the limited spectrum brings forth the chal-
lenge of their coexistence. Today, LPWANs are not equipped to
handle this impending challenge. It is difficult to employ sophisti-
cated media access control protocol for low-power nodes. Coexis-
tence handling for WiFi or traditional short-range wireless network
will not work for LPWANs. Due to long range, their nodes can be
subject to an unprecedented number of hidden nodes, requiring
highly energy-efficient techniques to handle such coexistence. In
this paper, we address the coexistence problem for LoRa, a lead-
ing LPWAN technology. To improve the performance of a LoRa
network under coexistence with many independent networks, we
propose the design of a novel embedded learning agent based on
a lightweight reinforcement learning at LoRa nodes. This is done
by developing a Q-learning framework while ensuring minimal
memory and computation overhead at LoRa nodes. The framework
exploits transmission acknowledgments as feedback from the net-
work based on what a node makes transmission decisions. To our
knowledge, this is the first Q-learning approach for handling coex-
istence of low-power networks. Considering various coexistence
scenarios of a LoRa network, we evaluate our approach through
experiments indoors and outdoors. The outdoor results show that
our Q-learning approach on average achieves an improvement of
46% in packet reception rate while reducing energy consumption by
66% in a LoRa network. In indoor experiments, we have observed
some coexistence scenarios where a current LoRa network loses all
the packets while our approach enables 99% packet reception rate
with up to 90% improvement in energy consumption.
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1 INTRODUCTION
With its capability to enable low-power (milliwatts) wireless com-
munication at low data rates (kbps) over long distances (kms), the
Low-Power Wide-Area Network (LPWAN) technology is disrupting
the Internet-of-Things (IoT) landscape. As such, LPWANs can en-
able many wide-area IoT applications such as smart cities, smart
buildings, and smart meteringwhere numerous low-power nodes di-
rectly forward information to a cloud-connected gateway [8, 9]. Due
to their escalating demand in IoT applications, recent years have
witnessed the emergence of numerous LPWAN technologies such
as LoRa (Long-Range), SigFox, IQRF, RPMA , DASH7, Weightless-
N/P, Telensa in the ISM band; EC-GSM-IoT, NB-IoT, LTE Cat M1,
and 5G in the licensed cellular band; and SNOW [29] in the (unused)
TV band.

The rapid growth of LPWANs in the limited spectrum brings
forth the challenge of coexistence. The number of connected devices
is expected to exceed 50 billion within a year [23]. With Comcast
recently announcing to add LPWAN radios on set-top boxes, LP-
WANs will be ubiquitous in the US [22]. The coexistence problem
will be severe in urban areas where the spectrum can be overly
congested due to numerous independent networks. The immedi-
ate effect of such coexistence is degraded network performance
in terms of throughput, latency, and energy consumption. Some
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networks or devices may even suffer from spectrum starvation.
Repeated attempts to access the spectrum will drain their batteries.
Studies show a collision probability of ≈ 1 if 1000 nodes of LoRa,
SigFox, or IQRF coexist [12, 14]. Another study shows a throughput
reduction of 75% when four LoRa networks coexist [37].

Today, LPWANs are not equipped to handle the impending chal-
lenge of coexistence. Their nodes (sensor nodes) have very low com-
putation power, low memory, and limited energy typically supplied
from small batteries. It is difficult to employ sophisticated media
access control (MAC) protocol for low-power nodes. For example,
LoRa MAC protocol, LoRaWAN, is a very simple and low-overhead
protocol based on pure ALOHA, which even does not employ any
sort of collision avoidance. Existing collision resolving approaches
for LoRa are based on physical layer requiring a change in LoRa gate-
way and/or additional software-defined radio-based hardware, and
work mostly for several packets collision [32, 35, 38–40]. Such reac-
tive approaches cannot be generalized to handle the unprecedented
number of collisions arising from numerous unknown coexisting
devices/networks. Coexistence handling for WiFi, traditional short-
range wireless sensor network (WSN), and Bluetooth [41, 42] will
not work for LPWANs. In massive crowds of coexisting networks,
the interference pattern can be hard to detect for an LPWAN node.
Thus, a TDMA (time division multiple access) or CSMA (carrier
sense multiple access) based approach will also fail. Due to long
range, LPWAN nodes are subject to an unprecedented number of
hidden nodes, requiring techniques that handle such coexistence
while being highly energy-efficient.

In this paper, we study and propose to enable coexistence of
LPWANs. We specifically address the coexistence problem for LoRa
which is widely considered as an LPWAN leader [18]. It is commer-
cially available all around the globe with more than 600 known use
cases including smart cities, smart buildings, smart metering, and
smart supply chain with over 50 million devices deployed on every
inhabited continent [19]. Industry analyst IHS Market projects that
40% of all LPWAN connections will be based on LoRa in a few years
[30]. Thus, many LoRa networks will have to coexist. Furthermore,
it operates in the unlicensed ISM band which is limited and shared
by various other LPWAN technologies such as SigFox, IQRF, RPMA,
DASH7, Weightless-N/P, Telensa, and also by many other networks.

We develop a novel coexistence handling method for a LoRa
network based on embedded learning on low-power nodes. As the
wireless environment is largely unknown due to the coexistence of
massive number of unknown networks, a learning-based approach
becomes quite effective to take actions (e.g, transmit, sleep) accord-
ing to the conditions. However, most machine learning algorithms
are prohibitively computation-intensive and/or require consider-
able amount of memory which is again a big challenge for LPWAN
nodes. To this end, we propose the design of a novel embedded
learning agent at LoRa nodes based on a lightweight Reinforcement
Learning (RL) to improve the performance of LoRa networks under
coexistence with many independent networks. An RL agent (e.g.,
a node) is effective in an unknown environment where it learns
through its experience. We specifically adopt Q-learning, a popular
RL technique, which is well-suited for coexistence handling at the
LoRa nodes as it entails relatively low computation requirement
compared to other machine learning approaches. The proposed
Q-learning framework exploits transmission acknowledgments as

feedback from the network based on what an RL agent determines
the actions to yield a successful transmission.

While Q-learning based approach was previously used in frame-
basedMACprotocols with time-synchronization to learn contention
and collision with the nodes in the same network using a single
channel [13, 15], we adopt Q-learning to handle coexistence with
numerous unknown and uncoordinated LPWANs. Our proposed
embedded Q-learning agent incorporates LoRa characteristics and
works on top of traditional LoRaWAN with minimal overhead to
the low-power nodes. To the best of our knowledge Q-learning has
not yet been adopted to handle such coexistence. Specifically, the
contributions of this paper are as follows. (1) We present the design
of an embedded Q-learning agent for handling the coexistence of
a LoRa network with other networks upon modeling the coexis-
tence handling as a Markov Decision Process. The design ensures
minimal memory and computation overhead at LoRa nodes. To the
best of our knowledge, this is the first Q-learning approach for
LPWAN and for handling coexistence for any low-power network.
(2) Considering various coexistence scenarios of a LoRa network,
we evaluate our approach through extensive physical experiments
indoors and outdoors as well as through large-scale simulations in
NS-3 [26]. The outdoor results show that our approach on average
achieves an improvement of 46% in packet reception rate (PRR)
while reducing energy consumption by 66% in a LoRa network.
In indoor results, we have observed some coexistence scenarios
where a current LoRa network loses all the packets while our ap-
proach enables 99% PRR with up to 90% improvement in energy
consumption.

Section 2 presents an overview of LoRa and the system model.
Section 3 presents related work. Section 4 demonstrates the perfor-
mance of current LoRa network under coexistence through experi-
ments. Section 5 presents the design of the proposed learning-based
coexistence handling technique. Sections 6, 7, and 8 present the
experimental results, simulations, and conclusion, respectively.

2 BACKGROUND AND SYSTEM MODEL
Here, we describe the necessary background for LoRa in Section 2.1
and the system model in Section 2.2

2.1 An Overview of LoRa
LoRa is a leading LPWAN physical layer technology that provides
a communication range of 3-7 miles depending on the environ-
ment [3]. It ensures successful reception of packets at low signal-
to-noise ratio (SNR). LoRa modulation is derived from Chirp Spread
Spectrum (CSS). CSS spreads the signal over the entire bandwidth,
providing robustness to interference and enabling reception of
packets at low/negative SNR. The modulated signal consists of
symbols/chirps, whose frequency varies continuously over time. In-
formation is encoded onto each chirp using multiple cyclic shifted
chips. The number of chips in each symbol is controlled by the
spreading factor (SF). Specifically, SF is the ratio between symbol
rate and chip rate, and is in the range [7,12]. It controls the data rate
of transmission and hence the time on air and energy consumption.
A higher SF causes lower data rate and higher energy consumption,
and vice versa. Packets transmitted concurrently on different SFs
on the same channel can be received successfully at a receiver.
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Other configurable parameters for LoRa are channel, bandwidth,
and coding rate. In the US, LoRa operates in the unlicensed ISM band
(902-928MHz), and it defines 64 uplink channels with 125kHz band-
width and 8 additional uplink channels with 500kHz bandwidth. For
downlink, it defines 8 channels, each of bandwidth 500kHz. LoRa
also supports different levels of forward error correction (FEC),
called coding rates from 4

5 to 4
8 . A higher coding rate provides

higher reliability but increases the duration of each packet.
MAC protocol for LoRa is called LoRaWAN (LoRa Wide Area

Network) which enables low-power and low data rate communi-
cation between thousands of end-devices/nodes. Numerous LoRa
nodes are directly connected to one or more gateways forming a
star topology. The gateways forward the data collected from the
nodes to a central network server. The network server maintains
the application requirement, security, and network parameters.

LoRaWAN supports three classes of operation, namely class A,
B and C. In all classes, the nodes transmit using pure ALOHA. The
differences in the classes is in the reception of packets from the
gateway. Class A is the default class, where the nodes listen for
packets for two short receive windows, immediately after transmis-
sion (mainly used for acknowledgments). In Class B, the gateway
uses time-synchronized beacons and schedules receive windows
for the nodes. In class C, the nodes continuously listen for packets.

2.2 System Model

Coexisting node Primary node

Primary gateway
Coexisting gateway

Figure 1: System Model

We consider
a dense de-
ploymentwhere
many inde-
pendent LoRa
networks co-
exist with
multiple LP-
WANs in the
same spec-
trum in Figure 1. Without loss of generality, we consider one LoRa
network among them as the network of interest, called the primary
network. The primary network consists of numerous nodes con-
nected directly to one ormore gateways. Each node is equippedwith
a single half-duplex radio and is energy and memory-constrained.
The nodes sleep most of the time and wake up only to transmit
a packet to the gateway. Each node in the network relies on ac-
knowledgments (ACK) from the gateway to confirm the successful
reception of a packet. The node retransmits the packet if an ACK is
not received. The maximum number of retransmissions is config-
urable. The nodes periodically sense the environment and locally
decide whether to report the data. Thus, there is a minimum inter-
arrival time between packets. Note that the traffic in an LPWAN is
mainly in uplink (nodes to the gateway). The nodes support mul-
tiple channels and can transmit on any of the available channels
dictated by the link-layer protocol. The gateway is line-powered
and connected to the Internet. It supports concurrent receptions
of multiple packets on the same channel using different SF. The
number of concurrent receptions is governed by the hardware spec-
ification.

We consider all other networks operating in the same spectrum
as coexisting networks. The primary network does not possess any
knowledge about the coexisting network and operates indepen-
dently. Note that coexistence is different from jamming. In jam-
ming, an attacker intentionally causes collision. On the contrary,
in coexistence, limited spectrum causes collisions. Furthermore,
the coexisting nodes are limited by the same constraints as the
primary nodes, i.e., they are energy-constrained and do not possess
the capability of transmitting continuously on all channels. The
number of coexisting networks in the spectrum is large enough
to cause significant performance degradation in the primary net-
work. The communication technology of coexisting networks can
be different from the primary network, however, they operate on
the same spectrum.

3 RELATEDWORK
Limited power budget of LPWAN nodes makes it difficult to adopt
complex MAC protocol. Hence, SigFox and LoRa resort to ALOHA
with no collision avoidance [34]. While such lightweight protocols
provide energy efficiency, they are susceptible to interference and
cannot handle coexistence with many networks. Several studies
focused on analyzing the performance of LoRa under different co-
existence scenarios [5, 25]. However, very few works considered
handling the coexistence problem. A coexistence study through sim-
ulations revealed that using multiple gateways in distant places can
marginally improve throughput at the cost of infrastructure [37].

Several works have studied the problem of resolving collided
packets in LoRa through physical layer based approaches [32, 35, 38–
40]. These works propose a reactive approach requiring a change
in LoRa gateway and/or additional software-defined radio-based
hardware. Besides, the effectiveness of such collision decoding
approaches were demonstrated only for collisions with several
packets. Such reactive approaches cannot be generalized to handle
the unprecedented number of collisions arising from numerous
unknown coexisting devices/networks. In contrast, we propose a
link-layer based approach to handle massive coexistence which can
be directly applied at the low-power LoRa nodes without requir-
ing any physical layer change. The study in [27] uses the Poisson
cluster process to model LoRa dense networks but does not pro-
pose coexistence handling. Recently, the work in [6] has studied
the coexistence of LoRa and WiFi in the 2.4GHz band. However,
the approach is applicable only when the coexisting network uses
WiFi. In an uncoordinated environment with collisions from many
unknown networks, such an approach will not work. Furthermore,
the approach uses additional hardware for coexistence handling. In
contrast, we propose a link-layer based approach that can be used
with any existing LoRa network.

While there exists work on wireless coexistence considering
WiFi, WSN, and Bluetooth (see surveys [42]), it will not work well
for LPWANs due to their severe energy constraints. Due to large
coverage domains, LPWAN devices can be subject to numerous
hidden nodes. With their rapid growth in the limited spectrum,
coexistence will be a severe problem and new energy efficient tech-
niques must be developed to handle this problem. MAC approaches
like ALOHA, TDMA or CSMA/CA may perform very poorly under
severe coexistence. Due to the unprecedented number of hidden
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nodes in the network, a CSMA/CA based approach also becomes
ineffective. A TDMA algorithm does not scale well with the large
number of nodes. Furthermore, as the gateway is unaware of the
coexisting networks, transmissions in any TDMA time slot are still
subject to collisions. In contrast, the proposed learning based ap-
proach can dynamically infer other networks in the same spectrum
at the nodes while being energy and computation efficient.

We adopt Q-learning, a widely adopted RL technique, which
is well-suited for coexistence handling at LoRa nodes as it has
low computation requirement compared to other machine learning
approaches. It has been efficiently used in cognitive radios [43], and
in WSN for routing [4], quality of service provisioning [45], and
resource management [20, 24, 44, 47]. Effectiveness of Q-learning
was studied through simulation for LPWAN [46]. Q-learning was
also used in frame-based MAC protocols with time-synchronization
to learn contention and collisionwith the nodes in the same network
using a single channel [13, 15]. In contrast, we adopt Q-learning to
handle coexistence with numerous unknown and uncoordinated
LPWANs. Furthermore, many of the aforementioned approaches
rely on computation-heavy deep reinforcement learning techniques
involving deep neural networks which are not practical for resource-
constrained LoRa nodes. Thus, we propose an embedded Q-learning
agent which incorporates LoRa characteristic and works on top
of traditional LoRaWAN with minimal overhead to the low-power
nodes and evaluate through physical experiments. To the best of
our knowledge Q-learning has not yet been adopted to handle
coexistence of LoRa networks with many unknown networks.

4 PERFORMANCE OF A LORA NETWORK
UNDER COEXISTENCE

LoRa adopts a novel physical layer technique to receive packets
with a Signal-to-Noise ratio (SNR) 40 - 50dBm below the noise
floor. Furthermore, LoRa nodes open two long receive windows
of 1s for acknowledgments, limiting the packet rate from a node
and improving the chances of successful reception.The effect of
coexistence from other wireless technologies as well as other LoRa
networks has not yet been studied empirically. Here, we show
through physical experiments that the coexistence of other devices
or networks in the limited band can severely affect LoRa’s perfor-
mance. Specifically, in this section, we experimentally answer the
following questions. (1) Can other technologies interfere Lora? and
(2) What is the performance of LoRa under coexistence from other
LoRa networks?

4.1 Performance of a LoRa Network under
Coexistence with Other Technologies

Regular Co-exist
exp1 100% 0%
exp2 100% 0%

Table 1: PRR under constant interfer-
ence from other technologies

To test LoRa’s perfor-
mance under coexistence
with other wireless tech-
nologies (of different phys-
ical layer), we run an ex-
periment with Dragino SX1276 [17] mounted on Raspberry Pi 3 [28]
as the LoRa node and a USRP (universal software radio peripheral)
B210 device [36] as a coexisting node. We enable the LoRa node
and coexisting node to transmit on the same channel in the US902-
928MHz band and run two separate experiments. To represent

different (than LoRa) technologies, in the first experiment, the co-
existing node was using Amplitude Shift Keying (ASK) while, in
the second one, it was using Frequency Shift Keying (FSK).

We show the Packet Reception Ratio (PRR) at the gateway under
regular (i.e., without coexisting node) and coexistence scenario in
Table 1, where the USRP was transmitting packets one after another
without any gap to represent a severe coexistence scenario as if
numerous coexisting nodes were communicating. On the other
hand, the LoRa node was transmitting packets in 1 minute intervals
using SF 10, coding rate 4

5 , and bandwidth of 125 kHz. In both
experiments, LoRa PRR drops to 0% under coexistence.

Regular Co-exist
PRR 100% 100%

Avg Attempts/packet 1 2.16
Energy (J) 3.58 7.63

Table 2: Results under coexistence with other technologies.

To
observe
the per-
formance
of Lo-
RaWAN’s
pseduo-random channel hopping against severe coexistence from
other technologies, we run another experiment. We use two chan-
nels where the LoRa node was utilizing pseudo-random channel
hopping, while the coexisting node was transmitting on a single
channel only. We consider only ASK modulation based physical
layer at the USRP device as the effect of FSK based physical layer
was similar in the last experiment. All other settings were kept
unchanged. In Table 2, we show the PRR, average retransmission
attempts per packet, and total transmission energy consumption for
100 transmitted packets. We observe that LoRa nodes can deliver a
packet to the gateway using retransmission on different channels.
Specifically, each packet requires on average 2 transmissions for a
successful reception. The increase in retransmissions also increases
the energy consumption by 54%. Thus, pseduo-random channel
hopping can improve the PRR, but at the cost of significantly higher
energy consumption which is impractical for low-power nodes.

4.2 Performance of a LoRa Network under
Coexistence with Other LoRa Networks

Regular Co-exist
PRR 94.3% 80.3%

Avg Attempts/packet 1.35 1.98
Energy (J) 9.06 11.308

Table 3: Results under coexistence with LoRa networks.

To an-
alyze
the ef-
fect of
coex-
isting
LoRa networks on a primary network, we ran another experiment
with 2 independent LoRa networks coexisting in the same channel
and same spreading factor. Each network consists of 5 nodes trans-
mitting packets at 10 s intervals and uses separate gateways and
network servers. The maximum number of retransmissions was
set to 2 considering the network size. We transmitted 200 packets
from each node and report the results for the primary network in
Table 3. We observe that in this case, the primary network encoun-
ters packet failures and the PRR drops to 80% when the coexisting
network is active. Furthermore, we see that the average transmis-
sion attempts also increases by 40% in the presence of a coexisting
network, resulting in an increased Tx Energy consumption.

Thus, the impact of massive coexistence in LoRa networks is
twofold. It hampers packet reception at the gateway resulting in
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degradation of the quality of service. Again, it results in high num-
ber of retransmissions at the energy-constrained nodes. Thus, co-
existence handling is critical for a LoRa network. In the following
section, we address this problem by developing a novel autonomous
MAC protocol for LoRa that improves the PRR and reduces the
energy consumption of each node. Note that the proposed MAC
protocol is designed to handle severe coexistence scenarios. In
case of negligible interference, the nodes should switch to regular
LoRaWAN. The network manager can enable the proposed MAC
protocol based on network conditions.

5 PROPOSED LEARNING-BASED APPROACH
TO COEXISTENCE HANDLING

In the LPWAN coexistence scenario, the competing networks are
uncoordinated. Therefore whether a transmission (Tx) will be suc-
cessful or not depends on the present condition of the environment,
irrespective of the past states. We show that this dynamic environ-
ment is well-suited to the Markov Decision Process (MDP) model,
where the outcomes are determined by the current state of the
environment. Thus, we first model LPWAN coexistence as an MDP.

Due to the substantial number of coexisting networks, the envi-
ronment remains largely unknown to the nodes in the network. This
facilitates the effectiveness of a learning-based approach. However,
computation and memory intensive machine learning approaches
are impractical in the low-power nodes. Thus, we propose a novel
embedded learning agent based on RL to improve the performance
of LoRa networks with coexistence of many independent networks
without significant memory/computation overhead. Specifically,
we utilize Q-learning, a popular RL approach with low computation
requirements. A Q-learning agent learns the best action at every
state through trials. Each action is quantified through Q-values,
which are commonly stored in a lookup table, called Q-table. Due to
the large number of nodes in a LoRa network, a centralized agent
does not scale. Thus, we aim to embed the learning locally at the
nodes.

We design an embedded Q-learning agent for LoRa networks
to increase the number of received packets at the gateway, while
incurring fewer retransmission attempts than traditional LoRa. The
embedded agent is designed to utilize the characteristics of Lo-
RaWAN. Specifically, LoRaWAN has the unique characteristic of
concurrent reception across multiple orthogonal communication
paths. Furthermore, the nodes can locally select the communication
path at any time. The proposed embedded agent utilizes this by
selecting the best communication paths based on observation and
learning. Moreover, RL-agents interact with the environment by
executing actions and receiving reward/penalty. Thus, the agent
requires a feedback from the environment for learning. We achieve
this by exploiting the acknowledgement mechanism of LoRaWAN.
Each LoRa node opens two short receive windows after each uplink
for downlink communication from the gateway. Thus, rewards and
penalties are given based on successful reception of acknowledge-
ments.

By evaluating each action through trials, the agent populates the
local Q-table with a feasible memory overhead. The agent is able
to perform significantly better under coexistence by exploiting the
Q-table. Although the proposed Q-learning agent is designed based

on LoRa’s transmission characteristics, it can be easily adapted to
other LPWANs as well. In the following sections, we first model
LPWAN coexistence as an MDP. Based on the MDP, we present the
design of an embedded Q-learning agent for LoRa which is feasible
for energy-constrained low-power nodes.

5.1 LPWAN Coexistence as an MDP
An MDP is a discrete time state-transition framework where the
outcomes of each decision are partly random and partly under the
control of the decision maker [33]. It is formally represented as a
4-tuple (𝑆,𝐴,𝑇 , 𝑅), where 𝑆,𝐴,𝑇 , and 𝑅 are the set of states, set of
actions, state-transition function and the set of rewards, respec-
tively. Each primary node is an agent in the MDP. Note that, LoRa
networks are multi-agent systems, however a multi-agent MDP
is significantly difficult to solve. To remove the complexity of the
problem, we consider other agents in the system as part of the
environment and focus on single agent MDP formulation. When
invoked, an agent in state 𝑠 takes an action 𝑎, receives an immediate
reward 𝑟 and moves to the next state 𝑠′ with a probability P[𝑠′ |𝑠, 𝑎].

5.1.1 State Set. In our approach, the current state of the agent
consists of the parameters of the communication medium and the
state of the packet generated by the node. For a LoRa node, the
medium consists of many communication paths. A communication
path (CP) in LoRa consists of an uplink communication path (UCP)
and a corresponding downlink communication path (DCP). A UCP
is one element in the set of unique combinations of uplink channels
and SFs onwhich a gateway can concurrently receive packets, while
a DCP is a combination of a downlink channel and SF on which the
node receives the ACK from the gateway. For LoRa, the outcome of
packet transmission on one CP is independent of other CP.

When a packet is generated, it is in a ready-to-transmit state. If
the node has decided to delay the packet, the packet is in a sleep
state. If the packet has been delivered successfully to the gateway
and an ACK is received, it moves to the delivered state. Note that
if an ACK is not received, then the packet reverts to the ready-to-
transmit state. Thus, each state 𝑠 ∈ 𝑆 is represented as a 5-tuple
(𝑐𝑖 , 𝑓𝑖 , 𝑐 𝑗 , 𝑓𝑗 , 𝛿) where 𝐹,𝐶up and 𝐶down represent the sets of SF,
uplink and downlink channels, respectively; 𝑐𝑖 ∈ 𝐶up represents the
uplink channel, 𝑐 𝑗 ∈ 𝐶down represents the downlink channel, 𝑓𝑖 ∈ 𝐹

represents the SF used for uplink, 𝑓𝑗 ∈ 𝐹 represents the SF used for
ACK, and 𝛿 represents whether the packet is in ready-to-transmit,
sleep or delivered state. In LoRaWAN, the downlink channel for the
ACK is decided by the gateway based on the uplink channel used
by the node. Thus, the state set size is given by 3.|𝐶up |.|𝐹 |.

5.1.2 Action Set. The agent is invoked when a packet has been
generated and when a retransmission has been requested from the
application layer. The possible actions for the agent are transmit
and sleep. The agent can choose any available channel, 𝑐𝑖 ∈ 𝐶up
and SF, 𝑓𝑖 ∈ 𝐹 to transmit. If the agent chooses to sleep, the sleep
interval 𝜏𝑖 is chosen by the agent, along with the channel 𝑐𝑖 and
SF 𝑓𝑖 . The agent transmits the packet after the interval 𝜏𝑖 on the
chosen channel 𝑐𝑖 and SF 𝑓𝑖 . Thus, the set of actions is:

𝐴 = {Transmit (𝑐𝑖 , 𝑓𝑖 ), Sleep (𝑐𝑖 , 𝑓𝑖 , 𝜏𝑖 ) }
It is important to bound the time a node can sleep and delay its
transmission. An unbounded delay can halt the transmission for too
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long, seriously affecting the quality of service for many applications.
To avoid this, we use a maximum delay, 𝐷 , which denotes the
maximum time a packet can be delayed in the sleep state.

The maximum delay 𝐷 is divided into 𝐷
𝜙
discrete transmission

instants, where 𝜙 is the minimum interval between two consecutive
transmission instants. A node can choose to sleep for a time 𝜏𝑖 = 𝜂𝜙 ,
where 𝜂 is an integer value in the range [0, 𝐷

𝜙
]. The value of the

parameters 𝜙 and 𝐷 can be decided by the upper layers based on
application requirement and device memory constraints. The action
set size is: |𝐶up | · |𝐹 | · |𝐷𝜙 |. The value of 𝜙 and 𝐷 are the parameters
that control the size of the action set. A high value of 𝜙 reduces the
action set size, but limits the possible transmission instants for the
agent. Thus, the agent is not able to fully explore the availability of
the spectrum which can affect its performance. In contrast, a very
low value of 𝜙 results in a high memory and computation overhead.
Each agent in the system may select a different value of 𝐷 and 𝜙 ,
as we consider the other agents present in the system as part of the
environment. Thus, we do not require the nodes in the network to
be time-synchronized.
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Figure 2: State transition diagram.

5.1.3 State
Transition Func-
tion. The dy-
namics of
the environ-
ment ismod-
eled through
the state tran-
sition func-
tion, 𝑇 . It
defines the
next state
for each state and action pair with some probability. The func-
tion is given by 𝑇 : 𝑆 × 𝐴 −→ P(𝑆) where an element of P(𝑆)
is a probability distribution over the set of states. Thus, P(𝑆) =

{P[𝑠′ |𝑠, 𝑎] ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴}, where 𝑠′ is the next state. The next state
of the agent depends on the immediately previous state and action
(transmit/sleep). Thus, P[𝑠′ |𝑠, 𝑎] = P[𝑠′ |𝑠0, · · · 𝑠, 𝑎0, · · ·𝑎] satisfies
the Markov Property. Note that, while the agent can control the
parameters (channel or SFs) of the communication path, the out-
come of the packet transmission is unknown to it. Thus, the state
transition function 𝑇 for the MDP is unknown to the agent.

5.1.4 Reward Function Formulation. For every action 𝑎 taken in
state 𝑠 , the agent receives an immediate reward 𝑟 and incurs a
cost 𝑐 (𝑎) for taking the action. Then its total reward is given by:
𝑟 (𝑠, 𝑎) = 𝑟 + 𝑐 (𝑎)

Considering both energy consumption and PRR, we assign some
numerical values indicating rewards and costs. For example, we
consider 1 unit of cost for a transmission attempt and 2 units of
immediate reward if a corresponding ack is received at the node
indicating a successful packet reception. Thus, a failed transmission
will incur a cost of 1 unit. The reward function is given as follows:

𝑟 (𝑠, 𝑎) =


2 − 1 = 1 if Tx attempted; ACK received
0 − 1 = −1 if Tx attempted; ACK not received
0 if Tx not attempted

A policy 𝜋 is a mapping from states to actions. An agent’s objective
is to find a policy 𝜋∗ maximizing it’s total reward. Figure 2 shows
the state transition diagram for the MDP.

5.2 Embedded Q-learning in LoRa
We propose to adopt a lightweight machine learning approach to
find a feasible policy locally at the node for the LPWAN coexis-
tence MDP. Specifically, we adopt Q-Learning that enables an agent
to learn by interacting with its environment [33]. Q-Learning is a
model-free RL algorithm which does not require the state transition
probabilities to be known in advance. Nevertheless, it will learn
to take the best actions that maximizes its long-term rewards by
using its own experience. Furthermore, it is suitable for the LoRa
coexistence scenario because it has low computation requirements
than other machine learning approaches. To the best of our knowl-
edge, this is the first RL approach for handling coexistence for
any low-power network.

5.2.1 Rationale for Q-learning in LoRa. A centralized Q-learning
algorithm is not scalable since it introduces significant communi-
cation overhead between the gateway and the thousands of nodes.
Thus, we use an autonomous approach where each node uses an
embedded Q-learning agent. Q-learning has been shown to con-
verge to a reasonably good (which may not be optimal) solution
even in a multiagent environment [10]. Thus, our goal is to design
a lightweight agent capable of converging to a policy in a feasi-
ble time which can improve the performance of a LoRa network
(in terms of PRR and energy consumption) in a dense coexistence
scenario.

Finally, LoRa devices are extremely low-power and do not pos-
sess high computation power. Although Q-learning has a low com-
putation requirement compared to other RL approaches, we have
to be cautious in designing the Q-learning agent. The memory re-
quirement of a Q-learning agent is dependent on the size of the
actions and state space. In the case of a LoRa network under mas-
sive coexistence, each transmission at a different time can produce
different outcome, and thus the action and state space becomes ex-
tremely large. To this end, in our design, we divide the action space
in discrete time intervals to make the embedded agent memory and
computation efficient. Specifically, the time 𝜏𝑖 in the sleep action is
divided into 𝐷

𝜙
steps. Note that our goal is to utilize the transmit

and sleep actions to learn the best channel, SF and transmission
time to maximize the packet reception rate at the gateway. While
LoRaWAN loses packets due to its simple ALOHA like MAC, our Q-
learning agent may be able to successfully deliver the packet with
some delay. Since such a delivery may happen upon multiple retries,
it is natural that some packets will experience long delays. Since
LoRa applications are not typically time-sensitive, our approach is
still a practical choice for LoRa.

5.2.2 Q-Values and Action Selection Approach. The goal of the Q-
learning agent is to find the best action given the current state. It
tries to find the best policy that maximizes the total future reward
by learning from its own interaction with the environment. It quan-
tifies the quality of an action at a particular state through Q-values.
It represents the currently expected total future reward and is ini-
tialized to zero. Let the Q-value associated with action 𝑎 and state
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𝑠 be 𝑄 (𝑠, 𝑎). Through trial and experience, the agent learns how
good some action was. The Q-values of the state and action pairs
change through learning and finally represent the absolute value.
After convergence, taking the actions with the greatest Q-values in
each state guarantees taking an optimal decision in a single agent
environment. The new Q-value of pair {𝑠, 𝑎} in state 𝑠′ after taking
action 𝑎 in state 𝑠 is computed as the sum of old Q-value and a
correction term

𝑄 (𝑠′, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛾 (𝑟 (𝑠, 𝑎) −𝑄 (𝑠, 𝑎)) . (1)

The learning constant, 𝛾 , prevents the Q-values from changing
too fast and thus oscillating. The nodes take actions and update
the Q-values, repeating until the Q-values no longer change. The
agent stores the Q-values in a look-up table (Q-table) of size |𝑆 |.|𝐴|.
The agent chooses its next action in one of the following ways: (1)
it chooses the action with the highest Q-value at its current state,
which is called exploiting the Q-table. (2) it randomly chooses an
action, which is called exploring the environment.

Always taking the actions with maximum Q-value (greedy pol-
icy) may result in finding locally maximal solutions. On the other
hand, selecting always randomly implies ignoring prior experience
and spending too much energy to learn the complete environment.
We adopt an approach by combining and weighing both which is a
prominent approach in machine learning [33]. Specifically, we use
𝜖-greedy: with probability 𝜖 the agent takes a random action and
with probability (1 − 𝜖) it takes the best available action, which is
known to yield quick and high quality solutions [33]. The value of
𝜖 is set to a very high value in the beginning to encourage explo-
ration of environment. This interval is called the random exploration
interval. After sufficient data has been gathered about the environ-
ment, the value of 𝜖 is decreased to exploit the Q-table. The random
exploration interval is set by the network manager. Considering
the dynamic nature of the massive coexistence environment with
multiple embedded agents, the agents always continue learning.
Thus, Q-values are updated after every action.

Note that, every node acts as an agent whose Q-table size is
𝑂 ( |𝐴|.|𝑆 |), where |𝑆 | is the number states and |𝐴| is the number
of actions. Thus, the action and state space size is feasible even
in memory constrained devices. The Q-table is updated through
simple arithmetic operation (Eq. 1), which is also feasible for low-
power nodes.

6 EXPERIMENTS
In this section, we evaluate the performance of proposed Q-learning
agents under different coexistence scenarios in both indoor and
outdoor deployments.

6.1 Implementation
We use the Dragino SX1276 LoRa transceiver HAT [17] on raspberry
pi 3 [28], equipped with half-duplex transceivers, as LoRa nodes.
Each node uses a custom-built Q-learning agent on top of LMIC 1.6
LoRa/LoRaWAN [16] library. All nodes use 15dBm Tx power and
packet size of 10 bytes to emulate a large scale network.

The channel and spreading factor are selected based on the ac-
tion of the Q-learning agent. We use the RAK2245 HAT [11] on

Raspberry Pi 3 as the gateway with a local chirpstack network
server [7] for the primary network.

For emulating a large coexisting network, we used two USRP
B210 devices operating in conjunction with GNU-radio as coexist-
ing nodes. The coexisting nodes transmitted using ASK modulation
on the same channels as the LoRa nodes with a Tx power of 15dBM.
We use two different coexistence scenarios: namely, partial channel
coexistence and periodic coexistence. In partial channel coexistence,
the nodes transmit using 3 channels in the US 902-928MHz band
and the coexisting nodes create severe interference on two of the
available channels by continuously transmitting on them. In peri-
odic coexistence, we emulate a massive coexistence scenario with
high density traffic by limiting the number of available channels
to 1, while enabling the coexisting node to transmit on the same
channel with a packet rate of 4 packets per second.
Baseline. To our knowledge, this is the first work considering the
coexistence of LoRa networks with many unknown and uncoordi-
nated networks that does not require additional hardware. Thus,
we use the traditional LoRaWAN MAC implemented in LMIC 1.6
library (with 3 s retransmission backoff) as the baseline for our
approach. When operating on LoRaWAN MAC, the nodes use the
Adaptive Data Rate (ADR) algorithm [3] to select the Tx parameters.

For every experiment, we report the PRR, Tx energy consump-
tion per node and the average number of Tx attempts per packet.
We consider a packet is successful if it was received at the gate-
way and the corresponding ACK was received by the node. The
energy consumed in communication is a major contributor in the
total energy overhead of LPWAN nodes used in large-scale physical
deployments [9]. Thus, we report the energy consumed in Tx fol-
lowing the energy model described in [31]. For all experiments, we
compare the performance of the Q-learning agent after its random
exploration interval with LoRaWAN.

6.2 Indoor Experiments
18 ft

13 ft

9 ft

9 ft

9 ft

11 ft 13 ft

GW1

USRP 1

USRP 2

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10 N11

GW2

Figure 3: Indoor deployment.

6.2.1 Experiments
with USRP coexist-
ing nodes. We use
11 LoRa nodes and
a single gateway
in this experiment.
Figure 3 shows
the locations of
the nodes and the
gateway in our indoor deployment in an area of 42 ft ×18 ft, where
the nodes are marked with dark circles labeled from N1 to N11.
The indoor deployment is inside a building in a suburban area. The
default parameters for the Q-learning agent are: 𝜖 = 0.1, learn-
ing rate, 𝛾 = 0.5, maximum delay, 𝐷 = 10𝑠 , and 𝜙 = 1𝑠 For this
experiment, the nodes used a fixed packet rate of 60 packets per
hour. Note that in LoRaWAN nodes may retransmit each packet up
to 8 times. Furthermore, each retransmission procedure can take
up to 4-5 seconds due to the two long receive windows after each
transmission. The packet rate of 60 packets per hour was chosen to
accommodate these retransmissions. All results are based on 100
packets after the random exploration interval.
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Results under Varying Exploration Interval. The random ex-
ploration interval controls the time until the agent takes random
actions to explore the state-action space. We run experiments in
each coexistence scenario with 5 nodes and varying exploration
interval to show its effect on the performance of the Q-learning
agent.
Partial channel coexistence. Figure 4 shows the results under
partial channel coexistence where the exploration interval varies
from 0 to 20 minutes. Although the PRR for Q-learning is slightly
lower than LoRaWAN for 0 min exploration interval, energy con-
sumption (Figure 4(b)) and avg Tx attempts (Figure 4(c)) show that
Q-Learning improves the performance over time. Nevertheless, as
the exploration interval increases, the PRR also increases for Q-
learning and the average number of Tx attempts decreases. We
see that the energy consumption per node in Figure 4(b) increases
when using random exploration interval of 15 minutes. This can
be the result of an agent selecting an action with a higher spread-
ing factor. However, we note that the Tx energy consumption is
still lower than LoRaWAN while maintaining the same PRR. For
our subsequent indoor experiments with partial channel coexis-
tence, we use a 10 minute exploration interval as it is sufficient to
gather enough knowledge of the environment, as shown by the
PRR, energy consumption and average transmission attempts.
Periodic coexistence. In periodic coexistence, we vary the ex-
ploration interval from 10 to 50 minutes and report the results in
Figure 5. In Figure 5(a), LoRaWAN PRR drops to 0, as the pure
ALOHA MAC is not sophisticated enough to handle such dense
coexistence scenario, while Q-learning is able to ensure at least 50%
PRR. As the exploration interval increases 10 to 40, the PRR for
Q-learning also increases, while at 50 min of exploration interval
the PRR slightly drops due to over exploration. A similar result
can be observed for avg Tx attempts in Figure 5(c). This indicates
that too much exploration can adversely effect the learning per-
formance. In Figure 5(b), Q-learning agent has 7 times less energy
consumption on average than LoRaWAN. For our next experiments
with periodic coexistence, we use exploration interval of 40 minutes
as the results indicate that Q-learning agents are able to acquire
sufficient knowledge about the environment during this time.
Results under Varying Number of Nodes. Next, we test the
scalability of our approach by varying the number of primary nodes.
Partial channel coexistence.We run an experiment under partial
channel coexistence with 10 minute random exploration interval
for the Q-learning agent. Figure 6 shows the results for this experi-
ment where the number of primary nodes is varied from 2 to 11. In
Figure 6(a), the PRR of both Q-learning and LoRaWAN decreases
slightly as the number of nodes increase to 11. Overall, in this ex-
periment, we do not see a significant effect on PRR for coexistence,
as only 2 of the available channels are impacted. However, this
leads to higher Tx energy consumption and average number of
Tx per packet for LoRaWAN as shown in Figures 6(b) and 6(c), re-
spectively. Interestingly, for the 2-node case. the Q-learning agents
made slightly higher Tx attempts than LoRaWAN, while consum-
ing less energy. This is due to the Q-learning agents selecting an
action with lower spreading factor than LoRaWAN, which resulted
in significantly less energy consumption. A small improvement in
Tx attempts for Q-learning results in a large improvement in terms
of energy consumption for the same reason in the 11 node case.

Periodic coexistence. For the periodic coexistence case, we use
a random exploration interval of 40 minutes and up to 11 node.
Figure 7 shows the results for this experiment. In Figure 7(a), we
observe that Q-learning agents are able to maintain at least 99%
PRR in all cases. In contrast, all packets from LoRaWAN nodes
were interfered and the gateway did not receive any packets as
the pure ALOHA MAC used in LoRaWAN is not able to ensure
packet reception. In Figure 7(c), the Tx attempt per packet for the
Q-learning agent increases slightly as the number of nodes increase,
however it does not impact the Tx energy consumption severely
as seen in 7(b). Again, this is due to the choice of different SFs
across different experiments. Overall, these results show that our
embedded Q-learning approach is scalable.
Results under Varying Rate of Coexistence Traffic. We evalu-
ate the efficiency of our approach under varying coexistence traffic.
In Figure 8, we use a primary network of 5 nodes with periodic co-
existence and vary the packet rate from 2 to 3.6 packets/second. In
Figure 8(a), the PRR for LoRaWAN sharply decreases with increas-
ing coexistence packet rate, while the Q-learning agents are able to
maintain at least 99% PRR at all cases. We observe tha our approach
provides 87% decrease in energy consumption and 68% decrease in
Tx attempts on average Figure 8(b) and 8(c), respectively. Overall,
our approach can provide significant performance improvement
under varying coexistence scenarios.

6.2.2 Experiments under Coexisting LoRa Networks. For this exper-
iment, we use two separate LoRa networks, each with 5 nodes and
a single gateway. We use the Dragino LG308 LoRa gateway [1] with
The Things Stack network server [2] in the coexisting LoRa network.
To emulate a large deployment, we limit the number of available
channels to 1, and fix the SF to 10. Furthermore, we use a high
packet rate of 6 packets per minute, and to accommodate 6 pack-
ets per minute we limit the maximum number of retransmissions
to 1. In this experiment, both primary and coexisting networks
employed Q-learning agents with maximum delay, 𝐷 = 2𝑠 and
𝜙 = 200 ms. Note that as both networks are learning and adapting
to each other’s transmission patterns, the interference observed at
each agent is highly dynamic. Moreover, the coexisting network
behaves randomly for the random exploration interval. After the
random exploration interval when each agent starts to act based
on its Q-table, any random change in the transmission pattern is
detrimental to the performance. To avoid such issues, we set an
extremely low value of 𝜖 after the random exploration interval for
all agents. Specifically, we used 𝜖 = 10−5 in this experiment.
Results under varying penalty for missed packets. Under this
setup, we first run some experiments to fix the Q-learning param-
eters. We first vary the penalty for each missed packet and show
the PRR, average Tx attempts per packet and transmission energy
consumption per node in Figure 9. In Figure 9(a), we see that us-
ing a penalty of −0.5, both network have higher PRR compared
to other settings. Also, the average transmission attempts and the
transmission energy consumption are lower using this setup. Thus,
for our next experiments we use a penalty of −0.5.
Results under varying exploration interval.We next vary the
random exploration interval from 50 s to 500 s in Figure 10. Accord-
ing to Figure 10(a), as the exploration interval increases, the PRR
also increases for both networks and the highest PRR is observed
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Figure 4: Results under varying exploration interval for partial channel coexistence.
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Figure 5: Results under varying exploration interval for periodic coexistence.
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Figure 6: Results under varying number of nodes for partial channel coexistence.
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Figure 7: Results under varying number of nodes for periodic coexistence.

using exploration interval 500 s. Also, the average transmission at-
tempts and energy consumption are the lowest for this exploration
interval, as shown in Figure 10(b) and Figure 10(c), respectively.
Comparison with LoRaWAN using one retransmission. Next,
we fix the penalty for missing packets to -0.5 and the exploration

interval to 500 s and compare our approach with LoRaWAN. The
PRR, average transmission attempts, and energy consumption for
each node in the network are shown in Figure 11. We see in Fig-
ure 11(a) the nodes are able to improve their PRR using Q-learning.

9



2  2.4 2.8 3.2 3.6

Packet rate (per sec)

0

0.5

1

P
R

R

Q-learning

LoRaWAN

(a) PRR

2  2.4 2.8 3.2 3.6

Packet rate (per sec)

0

10

20

30

 E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

 p
e

r 
n

o
d

e
 (

J
) 

Q-learning

LoRaWAN

(b) Tx Energy Consumption

2  2.4 2.8 3.2 3.6

Packet rate (per sec)

0

2

4

6

8

A
v
g

 T
x
 a

tt
e

m
p

ts

p
e

r 
p

a
c
k
e

t

Q-learning

LoRaWAN

(c) Avg Tx Attempts

Figure 8: Results under varying coexistence node traffic.
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Figure 9: Results under varying penalty for missed packet.

50 250 500
Exploration interval (s)

0.6

0.8

1.0

PR
R

Q-learning 1
Q-learning 2

(a) PRR

50 250 500
Exploration interval (s)

5.8

6.0

6.2

6.4

En
er

gy
 c

on
su

m
pt

io
n 

 p
er

 n
od

e 
(J)

Q-learning 1
Q-learning 2

(b) Tx Energy Consumption

50 250 500
Exploration interval (s)

1.0

1.1

1.2

1.3

Av
er

ag
e 

Tx
 a

tte
m

pt
s

 p
er

 p
ac

ke
t

Q-learning 1
Q-learning 2

(c) Avg Tx Attempts

Figure 10: Results under varying exploration interval.

Specifically, the average PRR for both networks is 94% using Q-
learning, compared to 84% and 80% using LoRaWAN in primary
and coexisting network, respectively. Furthermore, the nodes are
able to reduce the transmission attempts by 33% on average in
the coexisting network (Figure 11(b)) and similarly improving the
transmission energy consumption by 30% (Figure 11(c)).
Comparison with LoRaWAN using no retransmission. To test
our approach under harsher scenarios, we disable retransmissions
completely for all nodes. Thus, in this experiment, each node is
making exactly one transmission attempt per packet. As the average
transmission attempt and transmission energy consumption does
not change in this setup, we show comparison in PRR only. Under
this setup, we again vary the negative reward from -0.25 to -1
and report the results in Figure 12. We observe that even without
retransmission, Q-learning agents are able to maintain PRR>85% for
most cases while the best performance is observed using a negative
reward of -1.

Next, we vary the exploration interval and observe that an ex-
ploration interval of 250 s performs the best in terms of PRR in

Figure 13. The agent requires some time to gather enough knowl-
edge about the environment in this case, thus the performance is
lower with low exploration interval.

Finally, in Figure 14, we compare our approach with LoRaWAN.
We observe that the average PRR improves by 77% in coexisting
network and 65% in the primary network. Furthermore, we observe
that using LoRaWAN some nodes were not able to deliver any
packets to the gateway (node 3 and node 7) as all nodes immediately
transmit their packet in default LoRaWAN and subsequently face
collisions. There is a fair distribution of PRR across nodes for Q-
learning due to the intelligent actions taken by the agents.

6.3 Outdoor Experiments
Figure 15 shows the distance and location of the gateway and nodes
at the Wayne State University campus in Detroit, Michigan. The
gateway and the coexisting nodes are located inside a stationary
car and the primary nodes are placed on the locations shown on the
map. We use up to 4 primary nodes, 2 USRP coexisting nodes and
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Figure 11: Results under coexistence from LoRa network.
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Figure 14: PRR comparison with Lo-
RaWAN under no retransmissions

one gateway in this experiment. Due to the lack of outside deploy-
ment, only USRP coexisting nodes were used. For the outdoor exper-
iments, we use a random exploration interval of 5 minutes. All re-
sults are collected for 25 packets after the random exploration inter-
val.
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Figure 15: Outdoor deployment.

Results under Varying
Number of Nodes. Figure 16
shows the performance of
Q-learning agents compared
to LoRaWAN under partial
channel coexistencewith vary-
ing number of nodes. In
Figure 16(a) as the number
of nodes increases the PRR
for both LoRaWAN and Q-
learning decreases. However,
Q-learning agents provide
better PRR than LoRaWAN in all cases. When the primary network
consists of 3 nodes, Q-learning agents provide 70% PRR, compared
to 47% in LoRaWAN. In Figure 16(b), Q-learning agents consume
65% less Tx energy on average than LoRaWAN. In Figure 16(c), Tx at-
tempts for both approach increase as the number of nodes increase.
However, Q-learning agents incur less Tx attempts than LoRaWAN.
In this result, the performance for both approaches is lower than
the result in indoor deployment. Due to the urban location, the
channels had a significantly higher level of residual noise than the
indoor deployment, which was at a suburban location. Furthermore,
the gateway antenna used in our experiment is not sophisticated
enough to handle such noisy environments. In Table 4, we observe
that the average SNR and received signal strength indicator (RSSI)

for 100 packets received at the gateway for the outdoor deployment
are significantly lower than that for the indoor deployment. This
led to overall lower PRR and higher Tx attempts than the indoor
deployment. Due to the elevated levels of noise, the Q-learning
agents have to continuously re-learn the environment, leading to a
lower performance at higher number of nodes.

7 SIMULATION

indoor outdoor
Avg SNR 6.3 -2.17
Avg RSSI -68 -79
Table 4: Avg SNR and RSSI

To complement the ex-
perimental results, we
conducted large scale sim-
ulation in NS-3 [26] us-
ing a single gateway, up
to 500 coexisting nodes,
and 400 primary nodes. In all simulations, the nodes were randomly
located on a disc of radius 6Km.

7.0.1 Simulation Setup. We use a custom-built Q-learning agent
which governed the MAC protocol for each node following our
approach on top of the LoRaWAN NS3 module in [21]. All nodes
and the gateway use 8 channels in the US 915MHz band. The co-
existing LoRa nodes used 8 retransmission per packet to create
severe coexistence. In all simulations, we use 𝜖 = 0.1, learning rate,
𝛾 = 0.5, maximum delay, 𝐷 = 10𝑠 , and 𝜙 = 1𝑠 . We vary the number
of primary and coexisting nodes and compare the performance of
the Q-learning agent after the random exploration interval with Lo-
RaWAN. The metrics used for simulations is the same as in physical
experiments.
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Figure 16: Results under varying number of nodes for partial channel coexistence (outdoor).

7.1 Performance of Q-learning agent under
varying number of primary nodes

In this simulation, we evaluate our approach by varying the number
of primary nodes from 100 to 400. For each run, the number of
coexisting nodes was equal to the number of primary nodes. The
minimum interarrival time for the primary nodes is set to 100+ 10𝑥
seconds, where 𝑥 is an integer chosen randomly in the range [1, 10],
while for the coexisting nodes it is set to an integer chosen randomly
from the range [50, 150] s. The random exploration interval and the
simulation time is set to 5 hours and 10 hours, respectively. Under
this setup, we vary the number of primary nodes and show the
results in Figure 17.

As the number of primary nodes increases, the PRR for both ap-
proaches decrease in Figure 17(a). However, the PRR for Q-learning
agents is better than LoRaWAN for all cases. For the same simu-
lation, we observe that the average Tx attempts per packet and
energy consumption per node are increasing as the number of pri-
mary nodes increases (Figure 17(b) and 17(c)). Again, the Q-learning
agents are able to maintain a lower energy consumption and av-
erage Tx attempts than LoRaWAN throughout the simulation. At
400 nodes, the Tx attempt per packet for Q-learning agents and Lo-
RaWAN are similar in Figure 17(c), however, as seen in Figure 17(a)
and 17(b), the Q-learning agents improve the PRR and Tx energy
consumption for the same setup. On average, the Q-learning agents
provide 28% improvement in PRR and 38% improvement in Tx en-
ergy consumption per packet. Overall, these result indicate that the
Q-learning agents are scalable to a large number of nodes.

7.2 Performance under Varying Number of
Coexisting Nodes

For this simulation, we used 100 primary nodes and varied the
number of coexisting nodes from 100 to 500. The minimum packet
inter-arrival time for the primary nodes was set to 50+10𝑥 seconds,
where 𝑥 is an integer chosen randomly in the range [1, 10], while
for the coexisting nodes it is set as an integer chosen randomly
from the range [50,150] s. The simulation time was set to 30 Hours
and the random exploration interval was set to 15 hours. Under
this setup, we vary the number of coexisting nodes and show the
results for Q-learning and LoRaWAN in Figure 18.

In Figure 18(a), we see the PRR of both LoRaWAN and Q-learning
decreases as the number of coexisting nodes increases. However,
the Q-learning agents perform significantly better in all cases. On
average, Q-learning agents are able to provide a PRR of 77%, while

for LoRaWAN the average PRR is 49%. In Figure 18(b) we see that the
Tx energy consumption for LoRaWAN increases with the number
of coexisting nodes, but for Q-learning it remains stable in all cases.
A similar trend is observed in Figure 18(c), where the average re-
transmission attempts per packet for Q-learning remains unaffected
with increasing number of coexisting nodes, but for LoRaWAN it
increases. Q-learning is able to reduce the energy consumed in
transmission by 47% on average over LoRaWAN while maintaining
a better PRR throughout the simulation. Thus, the Q-learning agent
significantly outperforms LoRaWAN in large-scale networks.

7.3 Performance under Dynamic Coexistence
Traffic

In this simulation, we evaluate our approach under system dynam-
ics. We fix the number of primary and coexisting nodes to 100.
Initially, the transmissions intervals for the coexisting nodes were
chosen randomly from the range [50, 150] s. However, after the
random exploration interval (5 hours), we change the transmis-
sion interval of some of the coexisting nodes to an integer chosen
randomly from the range [10, 50] s. We vary the number of coex-
isting nodes with dynamics from 20 too 100 and show the results
in Figure 19.

In Figure 19(a) and 19(b), we notice that as the number of coex-
isting nodes with dynamics increase, the PRR decreases, while the
energy consumption and average transmission attempts per packet
increases for both approaches. However, in all cases, Q-learning
outperforms regular LoRa (21% improvement in PRR on avg). This
shows that even under dynamic coexistence traffic, our approach
can converge to a feasible solution. As the Q-learning agents never
stop updating the Q-values, they are able to learn the dynamic co-
existing traffic pattern. Overall, this result shows that our approach
is applicable for dynamic coexistence scenarios.

8 CONCLUSION
To improve the performance of a LoRa network under coexistence
with many independent networks, we have proposed the design of
a novel embedded learning agent based on Q-learning at LoRa nodes.
The agent exploits transmission acknowledgments as feedback from
the network based on what a node makes transmission decisions.
To the best of our knowledge, this is the first Q-learning approach
for handling coexistence for any low-power network. We have
evaluated our approach through experiments indoors and outdoors
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Figure 17: Results under varying number of primary nodes.
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Figure 18: Results under varying number of coexisting nodes.
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Figure 19: Results under varying number of primary nodes with dynamic coexistence traffic.

under various coexistence scenarios. The results show that our Q-
learning approach on average achieves an improvement of 46% in
packet reception rate while consuming 66% less energy compared
to LoRaWAN in outdoor deployments. In indoor experiments, we
have observed some coexistence scenarios where all the packets
are lost under LoRaWAN while our approach enables 99% packet
reception rate with up to 90% improvement in energy consumption.
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