
An Internet of Intelligent Things Framework for
Decentralized Heterogeneous Platforms

Vadim Allayev
Computer Science, CUNY–Queens College

vadim.allayev94@qmail.cuny.edu

Mahbubur Rahman
Computer Science, CUNY–Graduate Center & Queens College

mdmahbubur.rahman@qc.cuny.edu

Abstract—Internet of Intelligent Things (IoIT), an emerging
field, combines the utility of Internet of Things (IoT) devices
with the innovation of embedded AI algorithms. However, it does
not come without challenges, and struggles regarding available
computing resources, energy supply, and storage limitations. In
particular, many impediments to IoIT are linked to the energy-
efficient deployment of machine learning (ML)/deep learning
(DL) models in embedded devices. Research has been conducted
to design energy-efficient IoIT platforms, but these papers often
focus on centralized systems, in which some central entity
processes all the data and coordinates actions. This can be
problematic, e.g., serve as bottleneck or lead to security concerns.
In a decentralized system, nodes/devices would self-organize and
make their own decisions. Therefore, to address such issues, we
propose a heterogeneous, decentralized sensing and monitoring
IoIT peer-to-peer mesh network system model. Nodes in the
network will coordinate towards several optimization goals:
reliability, energy efficiency, and latency. The system employs
edge computing, federated learning to train nodes in a distributed
manner, metaheuristics to optimize task allocation and routing
paths, and multi-objective optimization to balance conflicting
performance goals.

Index Terms—IoT, federated learning, metaheuristics, opti-
mizations.

I. INTRODUCTION

Internet of Intelligent Things (IoIT), an emerging field, com-
bines the utility of Internet of Things (IoT) devices with the
innovation of embedded AI algorithms. It provides predictive
and faster data analytics in IoT platforms thanks to machine
learning algorithms which enable intelligent processing of
huge amounts of sensor-generated data. However, it does not
come without challenges, and struggles regarding available
computing resources, energy supply, and storage limitations.
In particular, many impediments to IoIT are linked to the
energy-efficient deployment of machine learning (ML)/deep
learning (DL) models in embedded devices. Naturally, running
AI/ML on resource-constrained IoT nodes may pose such
difficulties. Edge computing and embedded machine learning
such as TinyML appear to be the hot topics to address these
challenges. Looking further still, federated learning — or its
variation split learning — may be the most optimal solution
to approach this matter. With this, we may be able to reduce
the communication burden on networks while enhancing scal-
ability and promoting adaptability [1].

Research has been conducted to design energy-efficient
IoIT platforms, but these papers often focus on centralized

systems, in which some central entity processes all the data
and coordinates actions. This can be problematic, e.g., serve
as bottleneck or lead to security concerns. In a decentralized
system, nodes/devices would self-organize and make their own
decisions. Therefore, we propose to design a heterogeneous,
decentralized sensing/monitoring IoIT mesh network. System
performance is evaluated according to the criteria that it is 1)
reliable, 2) energy efficient, and 3) has low latency. The sys-
tem employs edge computing, federated learning, metaheuris-
tic optimization, and multi-objective optimization. Federated
learning allows nodes to learn from local data while training
a shared model in a distributed manner, enabling privacy and
scalability. Moreover, metaheuristic algorithms such as genetic
algorithms and swarm intelligence can optimize resource/task
allocation and routing/communication paths to minimize en-
ergy consumption. In particular, we focus on multi-objective
optimization to balance our conflicting performance goals.

A. Mission

Design a heterogeneous, decentralized peer-to-peer sens-
ing and monitoring mesh network and optimize for relia-
bility, energy efficiency, and latency.

This paper explores:
1) Descriptions and explanations of IoIT, edge computing,

federated learning, metaherustic algorithms, mesh net-
works, and related concepts.

2) Recently published papers pertaining to the above topics.
3) The network architecture and implementation fitting for

our proposed system.
4) Multi-objective optimization, including what it is, why

we need it, the objectives to optimize, variables to
modify, and constraints to fulfill.

5) Simulating multi-objective optimization for a decentral-
ized mesh network and showcasing its results.

B. Use Cases

This decentralized mesh network setup can be utilized to
serve various use cases. For instance, in the more simple case,
sensors could detect local temperature or humidity. Training
the node models through federated learning would result in a
holistic understanding of the temperature or humidity of that
region. This would not necessarily require swarm intelligence
or genetic algorithms, since the use case is simple, not resource
intensive, and not time-critical. A more complex use case

1

would be identifying hot spots of cars or people in a
city in order to offer directions for the fastest routes and
ultimately reduce traffic flow. This lends itself nicely to a
mesh network, but would require constant updates of hot
spot information throughout the city. In this case, swarm
intelligence and genetic algorithms would be very applicable
to optimize communication routes between nodes and reduce
overhead. These are simply examples of how the system could
be used. The main point is that they are both scenarios in
which someone wants to monitor the information of some
region with many nodes that act independently, and ensure
all or most of that information propagates to and is accessible
from every node.

Different aspects of the system can be modified to impact
the reliability, energy efficiency, and latency of the system.
This is what we explore in the multi-objective optimization
and what we simulate for the evaluation. This optimization
is particularly important since we are dealing with resource-
constrained nodes, considering a heterogeneous system com-
prised of devices with different technical specifications/details,
and catering to different circumstances. For instance, in one
situation, latency may be held to a higher standard than
the other two objectives. In another situation where the data
exchanged is sensitive, reliability would be prioritized.

II. RELATED WORK

A. Related Algorithms

In general, we have recently seen developments in energy-
efficient algorithms for IoIT. For example, some researchers
developed an energy-efficient and scalable routing technique
for large distributed IoIT networks, specifically within a cloud-
based Software-Defined Network (SDN) system. They uti-
lized Genetic Algorithm (GA) and the swarm intelligence
algorithms Particle Swarm Optimization (PSO) and Artifi-
cial Bee Colony (ABC). Their network scheduling technique
applies Mobile Sink (MS) and optimizes the clustering of
heterogeneous IoT nodes in the physical layer for MS to
collect data. One concern would be the focus on a cloud-
based Software-Defined Network, rather than edge comput-
ing [2]. Another paper suggested metaheuristic-based routing,
claiming that the generic energy-efficient routing framework
in heterogeneous IoT is deficient. They propose two pre-
dictive models, one for energy-efficient node selection and
another to address convergence issues. Though, these algo-
rithms do seem more experimental and focus heavily on a
metaheuristic approach [3]. There have been other approaches
too, for instance one paper that doesn’t use GA, PSO, or
ABC, but rather Proximal Policy Optimization (PPO)-based
Deep Reinforcement Learning (DRL) to solve optimization
problems to improve AI Generated Content (AIGC) quality
and computation. The decentralized algorithm also integrates
an LSTM (Long Short-Term Memory) model to improve
its ability to handle temporal dependencies. Their methods
take advantage of edge computing by offloading computing
tasks to edge nodes, thereby optimizing task latency, energy
efficiency, and load balancing. This could be a helpful paper

to incorporate with respect to utilizing edge computing to the
fullest, but would not coincide with optimizing the system for
sensing/monitoring purposes [4]. The above papers focus more
so on routing and scheduling, but could we apply and expand
the concepts introduced in these papers to address monitoring
as well?

B. Federated Learning Applications

To clarify, federated learning (FL) enables multiple de-
vices to work together to train a machine learning model
without sharing raw data. As FL has been showing promise,
here are several papers that investigate this strategy to improve
energy efficiency.

One paper presents a framework to minimize processing
delay and reduce power consumption of Flying Ad-Hoc
Networks (FANET) in Unmanned Aerial Vehicles (UAV) by
exploiting Federated Reinforcement Learning. This is a study
done based on an aerial environment, but we may be able
to apply certain concepts into our own work. Nevertheless,
the devices of the project may be homogeneous/standardized,
which would be a source of conflict with our own goals [5].
Another promising paper outlines the development of a De-
centralized Federated Learning (DFL) technique that performs
distributed model training in Peer-to-Peer (P2P) manner by
incorporating neighbor selection and gradient push. Their find-
ings show a 57% reduction in communication cost and 35%
in completion time. The algorithms would need to be adapted
for our monitoring purposes and environment of sensors, but
the technique itself seems enticing [6].

Something to note, in general FL does inherently require
some level of coordination, since the local data from each
sensor would need to be aggregated to a shared model, i.e., it
would involve some central aggregator, like a server. However,
there are fully-decentralized alternatives. Namely, P2P (peer-
to-peer) FL (utilized in the previous paper mentioned) with
gossip learning, and Blockchain-based FL.

1) Decentralized FL Variations: P2P FL with gossip learn-
ing serves to overcome the bottleneck problem that comes
from a centralized system. Gossip learning is scalable, fault-
tolerant, with minimized communication overhead, but may
encounter issues with consistency, security, and propagation
time [7]. One study observed gossip learning operating at
a similar level to federated learning, despite its lack of a
central controlling entity. Gossip learning is able to converge
in a practically realistic time frame, and demonstrates its
capacity to compete with typical FL. The authors believe
gossip learning could be improved with more sophisticated
peer sampling methods [8].

Blockchain-based FL is another option, utilizing blockchain,
a public, trusted and shared ledger running on a P2P network.
One paper explains its improved security, but also its issues
with communication cost and resource allocation. They sug-
gest ways we may remedy these, for instance reward-based
training [9]. However, a different survey paper of blockchain-
based FL posits that the approach is increasingly impractical
and difficult, in large part due to the significant computational

2

power required, tricky tradeoffs between performance and
other factors like energy efficiency, and even potential issues
with security as well [10].

For the sake of reliability, energy efficiency, and latency,
P2P FL with gossip learning looks like the most compatible
approach, as it is lightweight and straightforward.

C. Related Infrastructure

Regarding the system infrastructure, a multi-hop mesh net-
work seems the most appropriate and practical, considering
our aim to work on decentralized system with heterogeneous
devices. Edge computing also seems more fitting to use as
opposed to cloud, as it is currently favored in IoT and
offers reduced latency and increased privacy [1]. However,
a cloud-based approach remains a consideration, as it would
permit us to circumvent limited computational power and
storage capacity constraints. We could even implement LoRa
architecture, which has a cloud component.

One paper that seems relevant to our goal discusses a
heterogeneous Edge-IoT mesh network with Multi-Hop-Over-
The-Air update technology that enables auto-configuration of
devices and quick deployment of services. This distributed
and collaborative ecosystem is a great demonstration of the
infrastructure we seek to employ [11]. Another paper explored
a heterogeneous, semi-distributed algorithm for traffic demand
forecasting using graph neural networks (GNNs) and lever-
aging data center computation via the cloud. They explain
that decentralizing the entire GNN operation led to excessive
node communication and overhead, so this solution prevents
that and enhances scalability, though it is not fully decentral-
ized [12]. Lastly, another paper focused on decentralized edge
computing for Community Mesh Networks (CMNs), using
lightweight virtualization and Information-Centric Networking
(ICN) to incorporate in-network caching, name based routing,
and to develop smart heuristic. The focus of the paper is
on service delivery rather than monitoring, but we could
take inspiration from the heuristic approach (relating to the
other metaheuristic paper) and edge-IoT approach in our own
work [13].

III. SYSTEM MODEL

A. Assumptions

An IoT system inherently has resource constraints, including
limited storage, computing power, and energy. Heterogeneous
devices/sensors may be from different vendors and may have
different sensor types, battery capacities, and power source
differences. However, all must work with Zigbee technology
and protocols. The environment may have interference, so
some messages may fail to send. However, nodes within
each other’s transmission range are assumed to be able to
communicate with each other.

B. Background Information

Federated learning (FL) enables multiple devices to work
together to train a machine learning model without sharing
raw data. Peer-to-peer FL (P2P FL) is a fully decentralized

version of typical FL without a central server with which the
nodes communicate. A mesh network refers to a decentralized
network topology in which nodes can connect to other nodes
directly to create a robust and fault-tolerant wireless coverage
area. Metaheuristic algorithms are higher-level procedures
that help find solutions to optimization problems. They accom-
plish this by finding sufficiently good solutions to the problem,
which drastically reduces the time it takes to solve, as opposed
to trying to find the exact most optimal solution, which
may take considerably longer. Swarm intelligence refers to
algorithms inspired by the collective behavior of decentralized,
self-organized systems, for instance ant colonies or flocks of
birds, for the sake of optimization. Genetic algorithms are
similar, they mimic natural selection over many generations
to find optimal or near-optimal solutions to a problem. Edge
computing refers to focusing on processing and storing in-
formation locally, closer to the source of data, as opposed
to externally on the cloud. Namely, operating at the level of
sensors/nodes which reduces latency and bandwidth usage.
Zigbee is a wireless communication protocol designed for
low-power, low-bandwidth devices. It is especially prevalent
in IoT applications. It is used in a mesh network environment,
permitting devices to communicate with each other directly or
indirectly through other devices in the network, thus creating
a more robust and reliable system.

C. Network Architecture

When deliberating between edge and cloud computing, and
considering current advances in technology, edge presents
itself as the better approach. Since it does not need to access
a cloud server externally, it inherently has less actuation time
and faster decision-making capabilities. Moreover, we want to
limit the involvement of a centralized element in this project.

The primary components of our system involve physical
sensing nodes, Peer-to-Peer Federated Learning (P2P FL), and
metaheuristic optimization algorithms. The system starts with
sensor-equipped devices that are placed around a given region.
These can be any type of sensor, from tracking temperature
to traffic. These sensors would monitor and collect data from
their environment and train their own model on that local data.
Next, devices/nodes would discover each other via Zigbee and
utilize P2P FL with gossip learning (which has proved itself to
be effective [6]–[8] to share their models with their neighbors.
This way, no centralized entity is involved and nodes operate
on their own, updating their model over time with P2P FL as
data converges. For more complex use cases, we implement
swarm intelligence algorithms in order to optimize peer dis-
covery, routing paths for communication, and resource usage;
primarily Ant Colony Optimization (ACO) but possibly also
Particle Swarm Optimization (PSO). Furthermore, since this is
a heterogeneous system, different devices may have different
physical capabilities and may inherently prioritize different
metrics (e.g., low latency vs. low energy consumption). Thus,
we incorporate multi-objective optimization to improve per-
formance and compatibility. These considerations may help to
maximize reliability and minimize energy consumption and

3

latency, enabling us to cater the system to the use case’s
requirements.

For the simulation, we will consider a use case where we
want to have a good understanding of the temperature of some
region, represented as an array of dimensions R×R, such that
our region will be split up into R2 squares/subregions. We will
generate a solution array for what we want the temperatures
to look like. Since temperature in nearby subregions cannot
realistically be extremely different, we will make sure adjacent
subregions do not vary more than a few degrees. Each of
the N nodes will ”train its local model” by ”detecting” the
temperature in its subregion. The node will accurately monitor
the temperature in its subregion, but will assume neighboring
subregions have the same temperature. This accounts for the
slight degree of error characteristic in these circumstances.
When a node is aggregating model data it just received from
a neighbor to its own model, it will find the average between
each subregions. In general, for this simulation we focus more
so on communication between nodes rather than sensing and
processing data.

IV. MULTI-OBJECTIVE OPTIMIZATION

A. Objectives

Our aim to create a fully decentralized sensing/monitoring
system inherently poses some interesting design challenges.
Namely, without the presence of a central controlling unit, all
the communicating and processing transpires on the level of
the nodes. The system we propose is also heterogeneous, so
each node may have different storage and memory specifica-
tions and may prioritize different metrics (e.g., low latency vs.
low energy consumption). As we originally mentioned, we are
focusing on (1) reliability, (2) energy efficiency, and (3) low
latency. Due to the conflicting objectives present, we deemed it
necessary to formulate a multi-objective optimization problem.
For the following equations, n represents the number of nodes
and N represents the set of nodes used in the simulation.

1) Reliability: Reliability represents the correct delivery
of data. In terms of a simulation, we can think of it as
the likelihood that a node completes its tasks successfully
and yields accurate results. The tasks of a node include:
collecting sensor data, exchanging information with peers, and
aggregating neighbor model data to its own model. For the
sake of simplicity, we may not focus on processing time at the
node level, since the process of a node gathering data from
the environment and updating its P2P FL model is largely out
of our control and up to the protocols of the hardware device
and library, respectively. Communicating data between nodes
reliably, rather than processing data, is the priority.

Simply, we attribute the reliability to the number of total
number of successful unique message deliveries, SM , with
respect to the total number of unique messages sent, TM .
Considering unique messages specifically is important, since
there is a chance that the message may drop and be resent,
thereby making it successful, albeit on two or more attempts.
In the equations below, R represents the reliability of the
system, and r(i) represents the reliability of a generation.

R =

∑g
i=1 r(i)

g
, r(i) =

∑n
j=1 SMj/TMj

n
← in gen i (1)

2) Latency: Latency generally refers to the delay before a
data transfer, but in the context of a system with its own unique
goals, its representation becomes more nuanced. One common
representation is end-to-end latency, which broadly refers to
the total time it takes for a signal to travel from its source
to its destination across a network, including transmission
and processing time. However, this is a decentralized system.
Rather than observing the delays involved with every node
communicating with a base station, we simply have nodes that
communicate with each other for the sake of building more
accurate models. This makes measuring latency more compli-
cated. (Note, similarly to reliability, we may not incorporate
node data processing time in the calculation, but rather only
the delays associated with transmission/propagation.)

One approach is to measure how long it would take for
every node to receive model updates from the majority of all
the other nodes. Simply, how long it would take for all the
nodes to be trained on data originating from some specified
proportion of the other nodes in the network.

Alternatively, we could measure how long it would take
for the system to become ”accurate”, such that each node’s
local model is ”close enough” to the actual data of the region
that the system is trying to monitor. Moreover, to ensure that
the system has reached a competent level of understanding of
the region’s data, we can also mandate that the average node
accuracy must be above a certain threshold as well. Thus there
would be a minimum and an average accuracy requirement.

Another option is to designate one or more nodes as
endpoints, whose aggregated models data would theoretically
be collected by users at those locations. In this case, the
latency would represent how long before all of the specified
endpoints have ”accurate” data. However, this resembles end-
to-end latency, characteristic of centralized systems, since
these endpoints serve as the general destination.

To stick with the decentralized nature of the project and
offer a holistic and simplistic approach, we consider latency as
the time it takes for the system to become generally ”accurate”
(with respect to the region’s actual data). Below, min, avg,
and max represent the minimum, average, and maximum node
accuracy of a generation (as percentages), respectively.

L = g if (avgg > ψ ∨ avgg + 1 ≥ maxg) ∧ ming > θ
(2)

where g = the number of simulated generations, ψ rep-
resents the required threshold for the average accuracy of
the system, θ represents the minimum requirement for the
accuracy of all nodes in the system, and θ ≤ ψ < 1.
Notice that there are two possibilities for the average accuracy
requirement. It either must be greater than ψ, or within 1%
of the max accuracy. This contingency ensures that a solution
may be found even in scenarios where nodes cannot detect

4

the entire region, i.e., there are subregions that no node can
reach. This is acceptable since there is also a min requirement,
by which all nodes must have an accuracy of at least θ. To
clarify, several messages may be sent in one generation, and
a generation is a generic unit of time used for the simulation,
e.g., one hour, one day.

This approach to measuring latency can be likened to the
time it takes to reach model convergence. That is to say,
how long before the models of the endpoint nodes more
or less stabilize, and would only minimally benefit from
further training. Therefore, we can think of latency in our
system simply as the number of generations until model
convergence.

3) Energy Efficiency: This objective tracks the energy
consumed in relation to the amount of work being done.
Simply, we look at the energy expended in communicating
data. Although reliability and latency may become more
or less of a priority, we should always strive to minimize
energy consumption (thereby maximizing energy efficiency),
considering the resource-constrained nature of IoT devices.
Along with latency, energy efficiency can be optimized with
the help of swarm intelligence or genetic algorithms, but for
our calculation, we look generally at how much energy is
consumed for a given simulation.

To calculate the energy consumption of a node carrying
out a single task, we use E = v × i × t, where E is the
energy consumed (in J) over t seconds with voltage v (in V)
and current i (in Amp). A node can transmit or receive. The
energy consumed during these modes may be represented as
Tx and Rx, respectively. The energy consumed when idling is
minimal and we consider it negligible. We measure the energy
consumption of the system, EC, as the average of e, the
energy expenditure of a node in each generation, with respect
to the number of generations. Thus, the energy consumption
is represented as:

EC =

∑g
i=1 e(i)

g
, e(i) =

∑n
j=1 Txj +Rxj

n
← in gen i

(3)

B. Decision Variables

In the context of optimization problems, these are the
inputs that we adjust to obtain various results. By changing
one decision variable at a time and keeping the rest of the
variables constant, we can observe the effects it brings about
and ascertain the most optimal value(s) for each variable. Here
are the variables that we modify:

1) Sharing Frequency: number of neighbors to which each
node may transmit messages (during each generation).
Sharing with more nodes would expend more energy
but reduce latency since it would lead to faster model
convergence.

2) Resend Threshold: the maximum number of messages
that a node is willing to resend in a generation. Re-
sending a message to the same node would increase

reliability, but may lead to increased latency or energy
consumption in the case that it takes multiple retries.

3) Communication Strategy: the criteria that nodes use
to decide which neighbors to share their models with.
Among these, we can choose neighbors (a) randomly,
sending to any neighbor within range, or (b) to the
least interacted, prioritizing neighbors the node has
communicated with the least.

We must also consider the number of nodes in the system,
the the size of the region in square meters, and the node
placement around the region, namely in a random or uniform
distribution. Different quantities and dimensions may impact
the results of the optimization, especially considering the clus-
tering of nodes and the inherent limitations of transmission and
detection range. Therefore, we also run different simulations
(with different decision variable values) for different scenarios
of node amounts, region sizes, and node placement.

C. Constraints

In the context of optimization problems, constraints are
the minimum requirements that solutions to the system must
satisfy. These are non-negotiable standards that terminate a
simulation if violated. For our purposes, here are the con-
straints:

1) Activity: All nodes in the system must remain active,
i.e., none can reach 0% battery.

2) Energy: The energy of the system (i.e., the average
energy of the nodes) cannot drop below φ, where
50% < φ < 100%.

3) Connectivity: All nodes must be connected to every
other node in some way.

D. Pareto-Optimal Front

The goal of the multi-objective optimization is to obtain the
Pareto front, also known as the Pareto frontier. This is the set
of all Pareto-efficient solutions. A Pareto-efficient solution is
a solution where it is impossible to improve any objective
without making at least one other objective worse. In our
case, a solution represents a simulation with a particular setup
of decision variables. So, a Pareto-efficient solution would
be a solution where you could not improve its reliability,
energy efficiency, or latency without decreasing something
else. For example, some of these solutions may be optimized
for reliability, and others for other objectives. Thus, we may
end up with a versatile set of solutions that are all the best in
their own way, consequently offering many options for system
specifications.

V. IMPLEMENTATION

For the evaluation of this paper and its associated results,
we simulate its behavior in Python. The simulation utilizes the
Numpy, NetworkX, Matplotlib, and SciPy libraries to create
a network with nodes, simulate gossip learning over many
generations to propagate model data between nodes, and repeat
the process many times over to generate different results for

5

different network setups. We also script several functions to
visualize the data.

For the system, we consider battery-operated devices with
microcontrollers. Therefore, devices cannot regenerate their
battery by means of solar energy. Regarding hardware em-
ulation, we would use relatively inexpensive physical sensing
nodes capable of Zigbee communication (and thus operating
on the 2.4GHz band). SimpleLink 32-bit Arm Cortex wire-
less MCUs would be sufficient for this purpose. Namely,
CC1310 [14], CC1352R [15], and CC2652R [16]. Since this is
a decentralized environment, there is no centralized entity. For
the federated learning aspect, we would implement P2PFL, a
decentralized federated learning library in Python [17].

VI. EVALUATION

A. Experimental Setup

To test the system, we simulated a network environment in
Python. To conduct the multi-objective optimization, we set
up an experiment based on the simple use case example. To
reiterate, let us consider a scenario in which the president of a
Homeowners Association is in charge of some neighborhood
with dimensions R × R (in meters) whose temperature he
wants to measure holistically. Implementation-wise, this would
look like a 2D matrix that represents the temperatures in the
different locations (or ”subregions”) of the region, relative to
its position in the matrix. In order to obtain a more accurate
measure of the temperature in the region, he decides to install
sensors across the neighborhood to obtain regional temperature
data. He may decide to do so by installing them uniformly atop
the street lamps of the neighborhood. He may instead implore
residents to install their own sensors on their mailboxes, which
would lead to a more random distribution of the sensors across
the neighborhood, with the incentive that they could easily
access an accurate representation of the regional temperature.
In either case, this scenario lends itself nicely to our system
model; a decentralized, heterogeneous system.

Before starting, we can make some assumptions:
• Each sensor has knowledge of nearby sensors within its

transmission range. We can assume that there is some
initialization stage during which the sensors discover and
take note of each other.

• Each node will have the following properties:
– 50m transmission range
– 30m detection range
– 1000J maximum energy

• All nodes start at maximum energy.
• The three constraints mentioned before will be fulfilled

(otherwise the simulation will terminate).
• The goal of the system is that all nodes have an accurate

enough model (i.e., meeting the average and minimum
system accuracy requirements), in order that each node
has a good understanding of the general temperature of
the region.

This involves creating a Node and P2PNetwork class in
Python. Our determiner for success will be a simulation’s

performance with respect to the three objectives we discussed
earlier. A simulation will be structured as follows:

1) Generate the values for area data, a 2D matrix of
integers that represents the temperatures of the region.

2) Create the nodes of the system, either with uniform or
random placement around the region.

3) Build and store a NetworkX graph that will keep track
of all the neighbors of a node (i.e., the nodes within its
transmission range).

4) Calculate the connectivity of the graph. If not sufficiently
connected as outlined by the Connectivity Constraint,
redo steps 2-4.

5) Generate local data. This represents the nodes monitor-
ing the temperature in their local subregions and storing
that data internally.

6) All nodes exchange model data with neighboring
nodes, in accordance with its sharing frequency,
resend threshold, and communication strategy.
The duration of this process is considered 1 round or
”generation,” which can be likened to some measure-
ment of time in the real world (e.g. 1 hour). This step
represents the P2P FL with gossip learning and develops
the model of each node.

7) Repeat step 6 until model convergence is reached or until
max rounds have passed.

As mentioned before, we can determine different results by
keeping all decision variables constant except for one which
we change. To accomplish this, we create several nested for
loops, with the variable of each loop modifying and pertaining
to a different decision variable. Specifically,
• Sharing frequency will be tested at values 1 through 5

neighbors/generation,
• Resend threshold at values 0, 5, 10, ..., 50 mes-

sages/generation, and
• Communication strategy at either random or least-

interacted.
After each simulation, we save the results so that we could
visualize them all together. For redundancy and robustness,
there will be one more layer of a for loop, which will cause
every simulation setup to run multiple times.

To investigate the effects of different area sizes, amounts of
nodes, and node distributions, we conduct this experiment of
running a plethora of decision-variable-changing simulations
for the following scenarios:
• 300m2 & 81 nodes (uniform distribution)
• 300m2 & 100 nodes (random distribution)
• 500m2 & 121 nodes (uniform distribution)
• 500m2 & 250 nodes (random distribution)

B. Pseudocode

We implement the following algorithm (Algorithm (1)) to
carry out the gossip learning stage of the simulation, which
constitutes what happens during 1 generation of the simulation.
Notice the use of the communication strategy and sharing
frequency decision variables:

6

Algorithm 1 Gossip Learning in Decentralized P2P Sensing
Networks

1: procedure GOSSIPLEARNING(communicationStrategy,
sharingFrequency)

2: round← round+ 1
3: Initialize reliabilityData[1..n nodes]← [0, 0, ..., 0]
4: Initialize energyData[1..n nodes]← [0, 0, ..., 0]
5: Shuffle nodes randomly to simulate random behavior
6: for each node in nodes do
7: if communicationStrategy = ”least-interacted” then
8: if |node.neighbors| ≤ sharingFrequency then
9: selected← node.neighbors

10: else
11: selected ←

node.neighbors[0..sharingFrequency − 1]
12: end if
13: node.neighbors ←

node.neighbors[sharingFrequency..] +
node.neighbors[0..sharingFrequency − 1] . Rotate
neighbors

14: else . Random selection strategy
15: selected ← Random sample of

min(sharingFrequency, |node.neighbors|)
neighbors from node.neighbors

16: end if
17: successfullySent← 0
18: totalSent← 0
19: for each neighborId in selected do . Send model and

save results
20: target← nodes[neighborId]
21: (numSuccessful, totalMessages,

selfEnergyConsumed, neighborEnergyConsumed) ←
node.sendModel(target)

22: . Keep track of reliability and energy consumed
23: successfullySent ← successfullySent +

numSuccessful
24: totalSent← totalSent+ totalMessages
25: energyData[node.nodeId] ←

energyData[node.nodeId] + selfEnergyConsumed
26: energyData[neighborId] ←

energyData[neighborId] + neighborEnergyConsumed
27: end for
28: reliabilityData[node.nodeId] ←

successfullySent/totalSent
29: end for
30: return reliabilityData, energyData
31: end procedure

Additionally, see below what occurs during the process of
a node sending its model data to a neighboring node. Note,
Algorithm 2 below is used by Algorithm 1 above. Also, this
procedure occurs at the node level. The process of sending
model data showcases:

1) two main transmission modes (with and without ac-
knowledgments),

2) probabilistic success rates for message transmission,
3) retry logic for failed transmissions, which makes use of

the resend threshold decision variable,
4) realistic energy consumption calculations (impacted by

node hardware specifications) for both the sender and
the receiver,

5) and the Activity Constraint, which is triggered if a node

Fig. 1. Trial Run Graph with Random Nodes

becomes inactive.

C. Trial Run

Before showing the results of the above four scenarios,
here is a trial run simulation to showcase the process and
outcomes of a single simulation (as opposed to hundreds
meant to optimize our objectives). The first trial run is for
a 300m × 300m region with 100 nodes that are randomly
distributed. Here is what that looks like Figure 1:

Notice the different coloring of nodes, which represent dif-
ferent MCUs, highlighting the system’s heterogeneity. Notice
also that each node is connected. The dotted red circles show
the transmission ranges of each node.

Now, for the decision variables, let us set the sharing
frequency to 3 neighbors/generation, the resend threshold to
5 messages/generation, and the communication strategy to
least-interacted. The results of the simulation are as follows,
Figure 2

Fig. 2. Trial Run Reliability

This is the reliability per generation. The average and
maximum reliability understandably dip over time. In the
beginning, when models are undeveloped and data is small,
there are only a few messages that need to be transmitted

7

Algorithm 2 Send Model Between Nodes in P2P Sensing
Network
1: procedure SENDMODEL(self, target)
2: Define ActivityConstraint() that exits simulation if a node becomes

inactive
3: numPackets← |self.sensedLocations|
4: numMessages← self.calculateNumMessages(numPackets)
5: if self.resendThreshold = 0 then . No acknowledgments needed
6: successful[1..numMessages] ← Random values where

P (success) = self.messageSendSuccessRate
7: numSuccessful←

∑
successful

8: numUnsuccessful← numMessages− numSuccessful
9: time← self.messageSendTime(numMessages)

10: selfEnergyConsumed ← self.voltage× self.txCurrent ×
time

11: self.consumeEnergy(selfEnergyConsumed)
12: if ¬self.active then
13: ActivityConstraint()
14: end if
15: receiveT ime ← self.messageSendTime(numMessages −

numUnsuccessful)
16: targetEnergyConsumed ← target.voltage ×

target.rxCurrent× receiveT ime
17: target.consumeEnergy(targetEnergyConsumed)
18: if ¬target.active then
19: ActivityConstraint()
20: end if
21: else . Acknowledgments required
22: sentSuccessful[1..numMessages] ← Random values where

P (success) = self.messageSendSuccessRate
23: ackSuccessful[i] ← Random value where P (success) =

self.ackSendSuccessRate if sentSuccessful[i], else False
24: initialSent←

∑
sentSuccessful

25: initialAcks←
∑

ackSuccessful
26: numUnsuccessful← numMessages− initialAcks
27: retries← 0
28: additionalAcksSent← 0
29: additionalAcksReceived← 0
30: while numUnsuccessful > 0 and retries <

self.resendThreshold do
31: retries← retries + 1
32: if Random() ≤ self.messageSendSuccessRate then . Retry

message goes through
33: additionalAcksSent← additionalAcksSent + 1
34: if Random() ≤ self.ackSendSuccessRate then . ACK

message goes through
35: additionalAcksReceived ←

additionalAcksReceived + 1
36: numUnsuccessful← numUnsuccessful− 1
37: Update first False in ackSuccessful to True
38: end if
39: end if
40: end while
41: . Calculate energy consumption
42: selfTransmitEnergy ← self.voltage × self.txCurrent ×

self.messageSendTime(numMessages + retries)
43: selfReceiveEnergy ← self.voltage × self.rxCurrent ×

self.messageSendTime(initialAcks + additionalAcksReceived, 5)
44: selfEnergyConsumed ← selfTransmitEnergy +

selfReceiveEnergy
45: self.consumeEnergy(selfEnergyConsumed)
46: if ¬self.active then
47: ActivityConstraint()
48: end if
49: targetReceiveEnergy ← target.voltage×target.rxCurrent×

self.messageSendTime(initialSent + additionalAcksSent)
50: targetTransmitEnergy ← target.voltage ×

target.txCurrent × self.messageSendTime(initialAcks +
additionalAcksSent, 5)

51: targetEnergyConsumed ← targetReceiveEnergy +
targetTransmitEnergy

52: target.consumeEnergy(targetEnergyConsumed)
53: if ¬target.active then
54: ActivityConstraint()
55: end if
56: successful← ackSuccessful
57: numSuccessful←

∑
ackSuccessful

58: end if
59: target.updateModel(self, successful)
60: return numSuccessful, numMessages, selfEnergyConsumed,

targetEnergyConsumed
61: end procedure

Fig. 3. Trial Run Energy Efficiency

Fig. 4. Trial Run Latency

to convey all of a node’s data. However, over time, models
develop, and nodes need to send more information, leaving
more room for potential error. The resend threshold is only
5 messages per generation, which is evidently insufficient to
maintain a perfect or near perfect reliability.

Figure 3: Energy efficiency naturally increases over the
generations for the same reason; more data, and therefore
more messages, needs to be sent in later generations. We see
the energy consumed level out towards the end, since by that
point the nodes have very developed models, without many
improvements.

Figure 4: We can observe the average accuracy requirement
being fulfilled in generation 4, and the minimum accuracy
requirement in generation 5. Moreover, the average and max-
imum accuracy seem to progress quickly, but the minimum
accuracy lags behind. This could indicate that a focus on
communicating with nodes with less developed models may
be beneficial.

D. Results

E. 81 Uniform Nodes

For each experiment, we plot the results of the simulations
on a 3D graph, with the objectives as the axes. Here is the
first experiment, with area size 300m2, 81 nodes, and uniform
node distribution: Figure 5.

The points with a red outline represent the Pareto-efficient
solutions. As you can see, there are a variety of effective
results, the consequence of different simulation setups. The
color of each point is an overall ”performance score,” simply

8

Fig. 5. 300m2 Area & 81 Uniform Nodes Results

Fig. 6. 300m2 Area & 81 Uniform Nodes Results Other Angles

calculated by normalizing the objective results and combining
them.

Figure 6 shows the same experiment from different angles.
Notice that even darker color points, which are technically a
worse performance score, are still part of the Pareto frontier.
Even if they are not among the best performing setups, they
are the best option for what they optimize.

Figure 7 showcases the Pareto-efficient solutions from
this experiment, listing each solution’s performance in each
objective. To reiterate, the reliability represents the average
proportion of successful messages sent per generation, energy
consumption represents the average energy consumed by a
node per generation, and latency represents the generation in
which the system converges, i.e., the average and minimum
system accuracy requirements are fulfilled. We can observe
the differences between simulations. For example, simulation
#168 has a relatively low reliability of 85.59% and high latency
with the simulation lasting for 8 generations, but very little
energy consumption. On the other hand, simulation #325 had a
near perfect reliability at 99.85% and needed only 1 generation
to converge, but expended more than 6 times the amount of
energy. Different system setups would be used for different
scenarios.

In Figures 8 and 9, you can see a visualization of the Pareto
frontier, overlayed by the points of the graph. Any location
on the mask is theoretically and realistically possible to
emulate, enabling individuals to obtain even more personalized
reliability, energy efficiency, and latency results.

Fig. 7. 300m2 Area & 81 Uniform Nodes Pareto-Efficient Solutions

Fig. 8. 300m2 Area & 81 Uniform Nodes Results with Mesh

Fig. 9. 300m2 Area & 81 Uniform Nodes Results with Mesh Other Angles

9

Fig. 10. 500m2 Area & 250 Random Nodes Results

Fig. 11. 500m2 Area & 250 Random Nodes Results Other Angles

F. 250 Random Nodes

To investigate a larger-scale problem, here is the last
experiment, with area size 500m2, 250 nodes, and random
distribution: Figures 10 and 11

The distribution of points on the graph are relatively similar,
but the reliability across the board has decreased, and energy
consumption has just about doubled. Some simulations did
have really low latency, but the upper limit increased a lot. We
can also see that there are more scattered clusters of points.

Fig. 12. 500m2 Area & 250 Random Nodes Results with Mesh

Fig. 13. 500m2 Area & 250 Random Nodes Results with Mesh Other Angles

Figures 12 and 13: Generally, uniform node placement
throughout the region led to decreased latency and energy
consumption. We also needed significantly fewer nodes to
fulfill the Connectivity Constraint and convergence if we
placed them uniformly. A uniform distribution meant that
each node was equidistant from one another and therefore had
several neighbors within its range guaranteed. However, there
was still always a case where the system could converge in
1 generation, regardless of the area size or node distribution.
Moreover, the reliability was overall about the same.

VII. CONCLUSION

A. Takeaways

IoIT is an emerging new technology with significant appli-
cations. Made possible thanks to edge computing, federated
learning, and TinyML (embedded ML), we are approaching
a time of innovative advancements in health, fitness, se-
curity, agriculture, manufacturing, transportation, and more.
The current challenges with this framework include limited
computing resources, energy supply, and storage limitations,
the consequence of running AI/ML on inherently resource-
constrained and often battery-powered IoT devices.

Metaheuristics is a crucial paradigm in the context of
optimization, enabling us to solve complex NP hard problems
sufficiently and in much less time. Among them are genetic al-
gorithms inspired by natural selection and swarm intelligence
which emulates collective behavior of natural systems such as
ants colonies, bird flocks, and bee swarms.

Multi-objective optimization entails optimizing different
objectives in order to find the Pareto-efficient solutions. By
modifying the decision variables and enforcing the constraints,
we were able to simulate our heterogeneous, decentralized
peer-to-peer mesh network in different ways to yield different
results. This system model is one that could certainly be uti-
lized with the prospect of IoIT, as it addresses the issues with
centralized systems; namely, the potential for the centralized
entity serving as a bottleneck or being taken down, rendering
the entire system inoperable.

B. Future Works

There are many ways we could improve the simulation. One
method is to implement more varied and nuanced decision
variables. For instance, regarding the communication strategy
decision variable (which determines the neighbors a node

10

chooses to talk to), we could also have the deciding factor
be neighbors with the most energy, or neighbors who have the
least updated models. This would offer even more versatile
results, especially since before deciding who to send to,
nodes would need to send an additional smaller message to
neighboring nodes, requesting their energy level or model
development, respectively. This would lead to more potentially
dropped packets and slightly more energy expended, but may
decrease latency as system models may converge faster.

Another idea is to refine the simulation by considering more
aspects of the system. We could consider Euclidean distances
between nodes, so messages have a higher drop rate over
longer distances. We could consider a ”trust” score to combat
malicious actors, so nodes could decide for themselves that
another node is suspicious (e.g., sending false information,
sending too many requests) and reroute accordingly. We could
even consider varying node transmission ranges, though that
may reveal difficulties like the hidden terminal problem.

Implementing metaheurstic algorithms would also be a great
step. For example, some environments may have rivers or
mountains or inaccessible areas, making node distribution less
straightforward. We could use a genetic algorithm to ascertain
the most optimal node placement in the system. Or, during
the actual simulations, to determine the best routing paths
and improve fault tolerance, we could use swarm intelligence
like Ant Colony Optimization to dynamically coordinate node
communication.

Additionally, we could incorporate techniques from the
papers in the Related Works section. For example, we could
leverage the decentralized Proximal Policy Optimization-based
Deep Reinforcement Learning approach outlined in one paper
to offload computational tasks to edge servers [4], or incor-
porate neighbor selection and gradient push, which reduced
communication cost and completion time in a different paper
that worked on their own decentralized FL technique [6].

Of course, the best course of action would be to purchase
the physical hardware and run these simulations in an outdoor
environment, with the actual P2P FL software, and see how the
system holds up. Through my simulation, the system model
looks practical. But considering this as a practical real system
necessitates real-world testing.

REFERENCES

[1] F. Oliveira, D. G. Costa, F. Assis, and I. Silva,
“Internet of intelligent things: A convergence of embedded
systems, edge computing and machine learning,” Internet
of Things, vol. 26, p. 101153, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660524000945

[2] P. K. Udayaprasad, J. Shreyas, N. N. Srinidhi, S. M. D. Kumar,
P. Dayananda, S. S. Askar, and M. Abouhawwash, “Energy efficient
optimized routing technique with distributed sdn-ai to large scale i-iot
networks,” IEEE Access, vol. 12, pp. 2742–2759, 2024.

[3] B. Rana, Y. Singh, and H. Singh, “Metaheuristic routing: A taxonomy
and energy-efficient framework for internet of things,” IEEE Access,
vol. 9, pp. 155 673–155 698, 2021.

[4] X. Zhang, S. Li, J. Tang, K. Zhu, Y. Zhang, and B. Sikdar, “Drl-enabled
computation offloading for aigc services in iiot-assisted edge computing
networks,” IEEE Internet of Things Journal, vol. 12, no. 9, pp. 12 829–
12 844, 2025.

[5] C. Grasso, R. Raftopoulos, G. Schembra, and S. Serrano, “H-
home: A learning framework of federated fanets to provide edge
computing to future delay-constrained iot systems,” Computer
Networks, vol. 219, p. 109449, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128622004832

[6] Y. Liao, Y. Xu, H. Xu, M. Chen, L. Wang, and C. Qiao, “Asynchronous
decentralized federated learning for heterogeneous devices,” IEEE/ACM
Transactions on Networking, vol. 32, no. 5, pp. 4535–4550, 2024.

[7] D. Naik, P. Grace, N. Naik, P. Jenkins, D. Mishra, and S. Prajapat, “An
introduction to gossip protocol based learning in peer-to-peer federated
learning,” in 2023 IEEE International Conference on ICT in Business
Industry & Government (ICTBIG). IEEE, 2023, pp. 1–8.

[8] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized learning works:
An empirical comparison of gossip learning and federated learning,”
Journal of Parallel and Distributed Computing, vol. 148, pp. 109–124,
2021.

[9] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 806–12 825,
2021.

[10] Y. Qu, M. P. Uddin, C. Gan, Y. Xiang, L. Gao, and
J. Yearwood, “Blockchain-enabled federated learning: A survey,”
ACM Comput. Surv., vol. 55, no. 4, Nov. 2022. [Online]. Available:
https://doi.org/10.1145/3524104

[11] L. Carnevale, A. Ruggeri, F. Martella, A. Celesti, M. Fazio, and
M. Villari, “Multi hop reconfiguration of end-devices in heterogeneous
edge-iot mesh networks,” in 2021 IEEE Symposium on Computers and
Communications (ISCC), 2021, pp. 1–6.

[12] M. Nazzal, A. Khreishah, J. Lee, S. Angizi, A. Al-Fuqaha, and
M. Guizani, “Semi-decentralized inference in heterogeneous graph
neural networks for traffic demand forecasting: An edge-computing
approach,” IEEE Transactions on Vehicular Technology, vol. 73, no. 12,
pp. 19 400–19 416, 2024.

[13] A. Lertsinsrubtavee, M. Selimi, A. Sathiaseelan, L. Cerdà-Alabern,
L. Navarro, and J. Crowcroft, “Information-centric multi-access
edge computing platform for community mesh networks,” in
Proceedings of the 1st ACM SIGCAS Conference on Computing
and Sustainable Societies, ser. COMPASS ’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3209811.3209867

[14] Texas Instruments, “CC1310 Product Page.” [Online]. Available:
https://www.ti.com/product/CC1310

[15] ——, “CC1352R Product Page.” [Online]. Available:
https://www.ti.com/product/CC1352R

[16] ——, “CC2652R Product Page.” [Online]. Available:
https://www.ti.com/product/CC2652R

[17] P. Guijas Bravo, L. Ruanova, J. Garrido, and C. Héctor, “Peer-to-Peer
Federated Learning.” [Online]. Available: https://www.p2pfl.com/

11

